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Abstract. The Berman problem for two-dimensional flow of a viscous fluid through an infinite channel is studied.
Fluid motion is driven by uniform suction (or injection) of fluid through the upper channel wall, and is charac-
terised by a Reynolds numbgr, the lower wall is impermeable. A similarity solution in which the streamfunction
takes the formjy = —x ¥ (y, t) is examined, where andy are coordinates parallel to and normal to the channel
walls, respectively. The functiof satisfies the Riabouchinsky—Proudman—Johnson equation, a partial differential
equation iny andt; steady flows satisfy an ordinary differential equationyinThe steady states are computed
numerically and the asymptotics of these solutions described in the limits of small wall suction or injection, large
wall injection and large wall suction, the last of these being given more concisely and more accurately than in
previous treatments. In the time-dependent problem, the solution appears to be attracted to a limit cycle when
R > 1 (large wall suction). This solution has been computed numerically ferl/R down to 0011, but the
structure of the solution makes further numerical progress currently infeasible. The limit cycle consists of several
phases, some with slow and others with very rapid evolution. During one of the rapid phases, the solution achieves
a large amplitude, and this feature of the solution lies behind the practical difficulties encountered in numerical
simulations. The profile of the solution is plotted during the various phases and corresponding asymptotic descrip-
tions are given. An exact solution to the Riabouchinsky—Proudman—Johnson equation covers most of the phases,
although separate discussion is required of the boundary layers near the two walls and an interior layer near a zero
of #. Particular consideration is required when this zero approaches the upper channel wall.
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1. Introduction

We consider a similarity solution of the Navier—Stokes equations for plane flow of a viscous
fluid confined between parallel walls. The flow is driven by uniform withdrawal (or injection)
of the fluid through the upper channel wall, the lower wall being impermeable. The problem is
characterised by a Reynolds numlirbased on the speed at which fluid is withdrawn from
the channel, and our particular interest is in the asymptotic structure of the flow when this
Reynolds number is large.

The governing Navier—Stokes equations and boundary conditions permit a flow whose
streamfunction) takes the form-x ¥ (y, t), wherex is the coordinate parallel to the channel
walls, y is the normal coordinate ands time. The governing partial differential equation for
the similarity function¥ is due to Riabouchinsky [1] — see also Proudman and Johnson [2];
as a special case, steady flows (those for wifichk= f(y)) satisfy an ordinary differential
equation [3] studied by Berman [4] in the context of channel flow. We shall refer to the
problem of determiningF (y, ¢) for various Reynolds numbers as the Berman problem.
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The large Reynolds number asymptotic behaviour of the steady solutions has proved re-
markably subtle, and was one of the first applications of exponential asymptotics in fluid
mechanics (by Terrill [5]; see also [6] and [7]). It is this large Reynolds number behaviour, of
both steady and unsteady solutions, that we primarily treat below.

The Berman problem was originally investigated in the case where both channel walls are
equally permeable (see, for example, [4, 8, 9]). The extension to a more general case, where
the fluid is withdrawn from the two channel walls at different rates, has also been carried out
[10-15].

The limiting case of ‘complete’ asymmetry, with one permeable and one impermeable
wall, has previously been investigated [7, 15, 16], and it is this problem that is addressed in
this paper. In this case, there is a unigue steady solution for all valugssstcept in the range
7-05~ Ry < R < R, = 7-31, where there are three solutions [15, 16]. After formulating
the problem in Section 2, in Section 3 we compute the steady solutions numerically and offer
asymptotic solutions in the three limits of large wall injection, large wall suction, and small
wall suction or injection. Numerical solution of the ordinary differential two-point boundary-
value problem is simplified by means of a rescaling due to Terrill [8] which converts it into an
initial-value problem. This rescaling allows calculation of numerical solutions at much larger
Reynolds numbers than would otherwise be possible by direct calculation, for example by
shooting from the channel walls and matching.

It is possible to compute the stability of the steady flows to disturbances which are also
of the similarity formy = —x¥ (y, t). It is then found [15] that the steady state becomes
unstable in a Hopf bifurcation &8 = R3, whereR; ~ 12.755. Numerical evidence sug-
gests that this bifurcation is supercritical, and that a limit cycle existskRfor R3. This
limit cycle seems to be stable (within the context of the Riabouchinsky—Proudman-Johnson
equation, henceforth the RPJ equation) for all values of the Reynolds number at which we
have carried out numerical simulations of the initial-value problem (see Section 4). As the
Reynolds number is increased, the limit cycle separates into slow and fast phases of evolution.
During one of the fast phases, the solution gains large amplitude, and this combination of rapid
evolution and large amplitude makes reliable numerical simulation difficult. Indeed with our
(admittedly rather unsophisticated) numerical scheme we have been unable to compute the
limit cycle reliably beyondR ~ 100 without the run times becoming prohibitively long. The
asymptotic structure of the limit cycle, described in Sections 5, 6 and 7, makes clear why
such numerical difficulties are encountered. We note that there have heretofore been very few
asymptotic treatments of time-dependent solutions to the RPJ equation, a notable exception
being the blow-up study of Grundy and McLaughlin [17].

We discuss our results in Section 8, and make our concluding remarks in Section 9. Appen-
dix A outlines the general solution to the inviscid RPJ equation in the case of zero pressure
and also analyses its similarity solutions, these playing a crucial role in Sections 6 and 7.
Appendix B discusses symmetry (and related) properties of the full (viscous) RPJ equation.
We note that the notation of Section 3 sometimes departs from that of the remainder of the
paper.

2. The Berman problem

We consider two-dimensional flow of a Newtonian fluid with kinematic viscositya chan-
nel of half-width . The flow is driven by uniform withdrawal of the fluid through the upper
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channel wall with speed’; the lower channel wall is impermeable. After adopting the scales

h andh/V for length and time, respectively, we note that a particular class of solutions to
the governing (dimensionless) Navier—Stokes equations may be written in terms of a stream-
functiony(x, y, r) via ¢ = —xF (y, t), wherex andy are coordinates parallel and normal

to the channel walls, respectively. The velocity field is then givem By 0{/dy = —xF;,

v = —0y/dx = F. After elimination of the pressure from the Navier—Stokes equations, we
find, for the similarity flow of interest, that the functigh satisfies the RPJ equation [9]

Fyyi = €Fyyyy + FyFyy — F Fyyys 1)
whereR = hV /v is the Reynolds number ard= R~%, subject to the boundary conditions
F(-L=%-Lt=%,@11 =0, F =1, (2

corresponding to normal suction (fer> 0) or injection (fore < 0) through the upper wall at
y = 1, and an impermeable no-slip lower wallyat= —1. For numerical simulation of (1) it
is useful to note that this equation may be integrated ongedngive [1, 2]

Fo = €Fypy + FP = FFy + p0), (3)

wherep(¢) is a function of integration, with the fluid pressure befhg, 1) +x°p(t)/2, where
p is given by

Fi=eFyy — FF, — Py 4)

p(t) is to be determined by imposing the four boundary conditionsForThe vorticity is
given by

O =V, — Uy = xFy,, )
the quantity#,, playing an important role in what follows.

3. Steady flows

3.1. NUMERICAL RESULTS

Steady flows, for whicl¥ (y, t) = f(y), satisfy

Gf‘//// + f/f// _ ff/// — O, (6)
subject to the boundary conditions
fE) = (=)= f(1=0, f=1 (7

For values ot that are not too small, the system (6—7) may readily be solved numerically. The
resulting bifurcation diagram is given in Figure 1, showiag” (1), which is proportional
to the shear stress at the upper channel wall, as a function of the Reynolds nRner
corresponding solutiorf (y) for smalle (i.e. large R) is shown in Figure 2.

For the purposes of calculating numerical solutions to (6—7), it is useful to apply the fol-
lowing technique, due to Terrill [8], for converting the boundary-value problem (6-7) into
an initial-value problem. (The technique also allows one to develop an alternative asymptotic
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Figure 1. Solid line is a plot of— f”(1) against Reynolds numbé = ¢~ for numerical solutions to (6—7). Note
that the solution is unique, except for a range of Reynolds numbers a®uad7. Where there are multiple
solutions, the upper and lower branches represent temporally stable solutions to (1-2); the middle branch is
unstable. Elsewhere, where the solution is unique, it is stabl® fer R3 ~ 12.755, but becomes unstable in
a Hopf bifurcation atR = R3. The dashed line (a) shows the smRIasymptotic approximation in (11) (the plot
includes terms up t&®%). When this series is reverted to giein powers of( (1) + %), the dashed line (b) is

obtained (the plot includes terms up(f” (1) + %)9). Crosses show the large-asymptotic approximation from
Section 3.4, optimally truncated. F&rless than around 14 it is not possible to apply this laRg@eproximation
consistently since Equations (28) and (30) have no real solutions; it is noteworthy that this occurs fairly close to
the fold.

description off to the one given below [6, 7].) First andy are rescaled by introducing
andn through

fO) = 3ebd(m), n=3b(y+D, (8

where the constaitis arbitrary at this stage. The parameté then absent from the equation
for d(n), which is

Grnan + Py by — Gy = 0. ©)
This equation is integrated numerically, subject to the initial conditions
$(0) =0, $'(0) =0, $"(0) = A, ¢"'(0) = B, (10)

whereA andB are arbitrary, until a zero af (), atn = 1, say, is obtained from the numerical
calculation. By takingy = 1) we obtain from (8) a solution to the boundary-value problem (6—
7); the corresponding value efis 2/(b¢(b)). By a suitable rescaling @f andr, we may set

B = 1. Solutions may then be calculated in the limiteas> 0" by letting A — A [18],
whereA, ~ —1.232 [19].

This reformulation of the problem allows us to compuytéy) for much larger Reynolds
numbers than is possible by solving the full boundary-value problem (6-7) directly, for ex-
ample by shooting. Since they arise as a result of the calculation, the Reynolds numbers for
which we are able to compute solutions are not necessarily round numbers (this explains the
‘odd’ values quoted in this paper). To illustrate the practical utility of the reformulation we
note that we have been able to compiitg) from (6—7) at Reynolds numbers up to around
42 by shooting from each wall and matching at an interior point, whereas we have computed
f up to Reynolds numbers in the region of*lsing (9—10). We have checked a sample
of our solutions obtained by Terrill's rescaling against direct solutions to the boundary-value
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Figure 2. The solution to (6-7) folR = 12256893 (solid line), together with the leading-order outer asymp-
totic approximation from Section 3.4 thgt ~ —122909 cos%ny (dashed line). The two lines are almost
indistinguishable.

problem (6—7), where these are feasible, and have found excellent agreement. All numerical
calculations were performed using integration routines from the NAG library in a double
precisionFORTRAN program.

In the subsections that follow we describe the asymptotic behaviour of the steady solution
in the limits of smallRr, large wall injection { R > 1), and large wall suctionR > 1).

3.2. STEADY FLOWS IN THE LIMIT R — O

For small Reynolds numbers, the solution to (6) may be written as a power series
o
fO) =) R"f(y). (11)
n=0

The first couple of terms in this series are readily found tof§e) = %1(1 + 922 —y)
and f1(y) = — 1551 — ¥H?(»® + 2y + 35). From these expressions, a smalleRpansion
of f”(1), plotted in Figure 1, is found to bg”(1) = —3 — 2R + O(R?). This series may
readily be reverted to giv® in powers of( (1) + %); the result is plotted in Figure 1. The
pressure term

p=—ef" =2+ ff", (12)
has the corresponding expansion

e¢]

Rp = Z R" py, (13)
n=0

where the first few terms am = 3/2, p1 = —81/140 andp, = 2929,107800.

The radius of convergence of the smaAlkeries forp may be estimated using the extension
by Mercer and Roberts [20] of the method due to Domb and Sykes [21]. We first compute a
large number of terms in (13); we have computed up te 36 using the computer algebra
package Maple. We then compute the guantities

_ Pn+1Pn-1 — p;f and co9, — 1- |:
- — =

B
! PnDPn-2 — p,2,_1 2

(14)

n— Bl‘l n
poaBy P +1]
Pn Pan
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If the series in (13) has finite radius of convergencwith convergence-limiting singularities
of orderg atr exp(£i6), then for largez,
1 1+4g¢g

B, == +0(n? and cod, = cosh + O(n~2). (15)
r rn

We estimate using the coefficientg available to us that ~ 5.5, ¢ ~ 0-37 and6 ~ 1.46,
so the convergence-limiting singularities appear to lie close to the imaginary axis. Curves (a)
and (b) in Figure 1 indicate the range of validity that can be obtained from the series.

3.3. STEADY FLOWS IN THE LIMIT R — —©

In the limit R — —o0, the solution to (6—7), away from a boundary layey at 1, takes the
form [16]

f() ~cosZ(l—y) — 2(=R) Vz(n/HY?(1 - y)sinZ(1—y) + O((—R)™), (16)

where the constany is to be determined by matching with the boundary-layer solution.
Neary = —1, f takes the form

F) ~ (=R {0o(Y) + O((—R) "3}, 17)
whereY = (—R)Y2(y + 1) and#, satisfies
05 + 0007 — 0,05 =0 (18)

subject to6p(0) = 6,(0) = 0 and the matching conditiody ~ n¥%/4 asy — oo. Thus
if we write 8p(Y) = (/4)Y?p(z), with z = (m/4)Y?Y, it follows that p(z) satisfies the
Falkner-Skan equation ([22], p. 316)

0" +pp" —p% =1 19)

(this is the casen = 1 in the usual notation), subject pg0) = p’(0) = 0 andp’(z) ~ 1 as
z — oo. Numerical evaluation of(z), by shooting, reveals that as— oo, p(z) ~ z — zo,
wherezg &~ 0-647900 [7], and this provides the constant required in (16).

3.4. STEADY FLOWS IN THE LIMIT R — o0

3.4.1. Interior- and boundary-layer analysis
We consider the behaviour closeyte= 1 of solutions to (6) which satisfy

aty =1 f=1 f'=0. (20)
We start by writing
y=1+¢Y, Y <0,

and defines(¢) « 1 by taking the location of the zero gf closest toy = 1 to beY = —1/3.
Moreover, we definae(¢) = O(1) andv(e) « 1 such that

aty =-1/8  f=0, fy = da, frvy = —5%a?v, (21)

asymptotic expressions for each of the unknodnsandv being obtained below.
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3.4.2. Interior layer
In view of (21), we scale according to

1

Y= -t —,
5 T )2

f=@)?f
to give

fovoy + fofoy — ffo99 =0,
(22)

the final condition here motivates the inclusion of the factdin the definition ofv in (21).
The only parameter appearing in (22pisvhich will prove to be exponentially small lh(see
(31) below). The first three terms in the required-> 0 limit of (22), in which exponential
growth is suppressed & — —oo (this is needed to match into the outer region), are given

by

f~ ¥ — WP 4V2F, (23)
where, writingG = F;;;4, we have

G~Y— \/ge?Z/Z (1 + erf(?/ﬁ)) ; (24)
since

G =V Fypy + Fyy = =375,

F is completely specified by integrating (24) four times using
N A~ A~ A~ T A~
atY =0 F=0 F;=0 Fy;= > F;p5 =0.

3.4.3. Boundary layerY = 0(1)
Writing, as8 — 0,

N N-1
f=1+8F, a~>) ¥a, F~Y §'F, (25)
n=0 n=0

we have

n—1
Fuoyyyy — Fayyy = Z (FmF(nflfm)YYY — FmYF(nflfm)YY) ,

m=0
atYy =0 F,=F,y =0, (26)
asYy — —oo F, ~o,41+0,Y,

whereag = 1; here we have matched with the first term in (23), which is valid to all powers
of 8. The boundary-value problem (26) determines bBtranda,,; and is readily iterated
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forward inn to give closed form solutions to any desired order. The first few terms,atel,
ap = 4,03 =129/4, andFo(Y) =1+ Y —expY, Fi(Y) =4+ Y — (3Y? — 3Y + 4) expY.
We note that we have been able to scale in order to formulate the above problems such
that the only parameter appearing in (22piand the only one in (25-26) & This makes
our approach both more concise and more generally applicable than previous attempts and
facilitates the construction of the solution to any ordeb.id\t this stage of the analysis, the
fact thatv(e) andd(e) remain to be determined is not a difficulty; in solving (22) we need only
to know thatv « 1 and (25-26) is implied by <« 1 on the assumption (justified below) that
v is exponentially small irs. Subsequent matching will determideandv as functions ot;
the first stage of matching, which we now describe, relatesy.

3.4.4. Matching between interior and boundary layers
Here we must match terms from the boundary layer which are exponentially snmal-as
—o0. The important quantity in the matching is the tesp, e’ in G, = F,yyyy, the constant
B. also being determined by solving (26); the first few termspare- 1,8, = —2,B, = —3
andGo(Y) = —expY, G1(Y) = (—3Y2 — Y + 2) expY. Since (24) implies

G~ —V2re"2  as¥ — +oo,

writing
N
B~ 8B, (27)
n=0

and matching requires, to any orde€r that
SB(8) ~ v2(au(8)8)%/%/ 27 /2, (28)
hence, as promised,is exponentially small ira.

3.4.5. The outer solution
The leading-order outer solution is simply, since ¢hierm in (6) is negligible,

280
f~—=—rcog3my), (29)
€TT

where we have required that to leading order (siee>> 1) f = 0aty = +1 andf’ = 3a
aty = 1 (to match with (23)). Matching with the second term in (23) then requires
T[ZEZ
~ 30
V™ s (30)
and (28) and (30) are the two equations determidifagandv(e), the functionsx(3) andp(8)
being known from the analysis above. To leading order we have

§ ~ Llog(1/e), v~ 2n%e?log(l/e)  ase — 0 (31)

and, since the expansions proceed in powessarfd are divergent, the use of optimal trunca-
tion methods when determiningandp (with the full balances in (28) and (30) being solved
for v and?) typically provides the most effective way to obtain an accurate solution. The
results of such a calculation are summarised in Figure 1 and Table 1.
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Table 1. Comparison between the ‘exact’ (numerical) valuédbt= max| f ()|,
and the leading-order asymptotic approximation tat= 2ud/me. Terms up to
an418V*+1L andp sV are included in the sums used to compui@ndp, where

N is either 19 (the largest value of for which we have computedy_; and
Ba), or some smaller value a¥, indicated in the table, which corresponds to
truncating the series fa¥ after its smallest term. For the examples given, this
truncation coincides with the optimal truncation for

N R d a M, M Error
5 200 007331 11290 10538 12148 13%
5 300 005858 10867 12157 13404 93%
14 2034503 003101 10365 41612 39662 49%

19 7118385 002375 10266 110502 107866 24%

19 2462234 001928 10211 30853 30565 095%
19 3572189 001825 10198 42314 42018 071%
19 8457171 001623 101746 88915 88579 038%
19 1225689 001549 101660 122909 122495 034%

3.4.6. Boundary layer aty = —1

Because (29) does not satisfy = 0 aty = —1, a boundary layer is also needed at the left-
hand (lower) boundary, but this is passive as far as the matching is concerned, the behaviour
neary = 1 being what is crucial in governing the leading-order solution. The inner scalings
are

y=-1+er/(@)"?  f=(ad)"?F,
leading, on matching with (29), to the Falkner—Skan problem

F{' + FZ — FoFy =1,
aty =0  Fo= F;=0,
asY — +oo Fo~ —Y,

so thatFy = —p(Y) with p given by (19).
3.5. SUMMARY

As evidenced by Figure 1 and by the preceding discussion, asymptotic methods provide very
effective means for constructing accurate analytic approximations over most of the range of
Reynolds numbers. Our asymptotic analysis here has been fairly complete — we have ap-
plied regular perturbation methods for small together with appropriate manipulations of

the resulting series (we note that treatment of the series by Padé approxicfabtsazin

and Tourigny [23]) does not seem to help much in improving its convergence), together with
singular perturbation methods in the limkRs— —oo andR — +o0. Our results in the limit

R — +o0 are worth highlighting, being significantly more accurate than those which have
been obtained before, the optimal truncation approach enabling us to obtain algebraic accuracy
in € despite many of the expansions proceeding in powerg tufgl1/¢). Such approaches to
problems involving logarithmic expansions should prove much more generally applicable and
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related developments will be reported in more detail elsewhere, our main focus here being on
the time-dependent problem discussed in the remaining sections.

4. Time-dependent flows: numerical results

4.1. NUMERICAL SCHEME FOR SOLVING THE INITIAL-VALUE PROBLEM

Our numerical scheme for computing time-dependent flows is broadly based on one of Glenn
lerley (personal communication). Equation (1) (or in practice (3)), together with boundary
conditions (2), is solved using the Chebyshev tau method [24]. We represent functions of
y as sums of Chebyshev polynomials, truncated at some finite order. We find it convenient
then to consider any function as being equivalent to the vector of coefficients in this finite
sum. We represent numerically the soluti®r(y, ¢,) at thenth time step as the vectgf" =

(f& .o T, where the superscrift denotes the transpose, with
Flyt) =Y [Ty, (32)
k=0

T (y) being thek-th Chebyshev polynomial. Derivatives 8f are calculated in spectral space,
while products are calculated in physical space.

We discretise (3) in time as

Fy— FITh = A FT+ FID + 200(FF = FFyy + p(0)", (33)
where A, is the time step and the superscript- 1, n or n + 1 indicates evaluation at the
corresponding time step. This expression is then readily rearranged to give an approximate
equation for the Chebyshev coefficierjté+l of the form

(D —eAD¥) " = [(D+eAD3 f" 1 +2A,8"] + (¢,0,0,...,0), (34)
wherec = 2A,p(1,) andg" = (g3, ..., g¥)" is the vector of Chebyshev coefficients such
that at thez-th time step

FZ—FFy = giTi(y). (35)

k=0

The matrix D is the differentiation matrix, such that if the vectorepresents the function

a(y) thenDa representsal/dy. In the tau method, the final three rows of the vector equation
(34) are changed in order to forg&"** to satisfy appropriate boundary conditions. Since
we integrate an equation that is third-orderyinit is appropriate to apply three boundary
conditions to (34); we choose to impose the homogeneous conditions from (2). To do this, the
last three rows of the matrik — €A, D® are replaced by

1-11-1-- (=K1 (—D¥
0-14-9... (—DXYK -1? (-DFK? (36)
0 14 9... (K — 1)? K?

to give a modified matrixD, and on the right-hand side of (34) the corresponding rows are
replaced by zeros. The matrd® is then invertible, and so

=0 (D +ea DY f 208" + D Ne,0,...,0), (37)
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Figure 3. Limit-cycle solutions to (1-2) for = 0-04, 0035, 003, 0025, 002, 0018, 0017, 0016, 0014 and
0-012 (the cycles grow in size asdecreases). Plotted are the quantitfgs (—1, ) and Fy,(1, ¢), which are

proportional to the wall stresses. Evolution around the limit cycle is clockwise. Note that the extreme values of
Fyy(£1, 1) achieved around the cycle increase rapidly ssreduced.

where it is understood that the quantity-]" in (37) is equal to the corresponding term in (34),
modified by replacing the last three rows with zeros. At this point the quantityinknown,
and must be determined by applying the remaining boundary condii¢h,s,) = 1. Since
T, (1) = 1 for all k, we have

K
1- 2: Oy
k=0
= (39
> Br
k=0
where
«=D[(D+eADYf 1+ 278"

andp = D71(1,0,0,---,0)7. This completes the evaluation gf**.

Our implementation of the numerical scheme is rather unsophisticated: for example, we
use a constant time ste, in each calculation, although, as we shall see, the nature of the
time-dependent solutions suggests that an adaptive time-stepping algorithm would lead to a
more efficient numerical solution. For each choice:pthe time stepA; is chosen so that
calculations using a smaller value af give essentially the same results, and the numerical
solution is considered to be converged.

4.2. NUMERICAL RESULTS FOR THE LIMIT CYCLE

For R < Rj, the system (1-2) has at least one stable steady solution, and the numerical
simulation of the initial-value problem appears to converge to a steady state at large time.
The bifurcation of the steady state Rt= R3 is a Hopf bifurcation, at which two complex
conjugate eigenvalues cross the imaginary axis. We find that the time-dependent numerical
solution is attracted to the steady state fo< R3 but approaches a small limit cycle f&
just beyondRs, and so we infer that the Hopf bifurcation is supercritical.

Figure 3 shows the limit cycle (by which we mean a spatially non-uniform solution that is
periodic in time) for a variety of values ef It is notable that the greatest wall stresses around
the limit cycle grow rapidly with decreasing This feature of the solution makes reliable
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Figure 4. Limit-cycle solution to (1-2) foe = 0-02. Plotted are the quantitie,, (—1, t) and Fy, (1, t), which
are proportional to the wall stresses.
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Figure 5. Time evolution of max ¥ (y, 1), miny, (v, t), y;(t) and log—p(¢) for the limit-cycle solution to (1-2)
for e = 0-02. Note the separation of the cycle into slow and fast phases.

computation of the solution difficult in the limit— 0. Another difficulty in computing these
limit cycles for smalle is that evolution of# is extremely rapid around a small part of the
limit cycle. Our method of non-adaptive time-stepping therefore becomes very inefficient in
this limit.

In Figure 4 we show the limit cycle for = 0-02. More detail of this solution is shown
in Figure 5, where we plot the maximum and minimum value§@¥, r) across the channel
as functions of time. Also shown are the evolution of the pressure coeffipientand the
interior zeroy, (¢) of &, which satisfiesf (y,(¢),t) = 0 with —1 < y,(¢#) < 1. Already for
this quite moderate value ef the separation of the evolution 6f(y, ¢) into slow and fast
phases can clearly be discerned in Figure 5.

For smalle, it is a feature of the solution that the interior zero®fcomes very close
to the upper wally = 1 near the start of the fast phase of the limit cycle. The zero is then
swept rapidly back almost to the midline of the chanpek: 0. To characterise this feature,
for a given limit cycle we let the minimum value of(z) be y,; Figure 6 shows how, and
min(1 — y,(¢)) vary withe.

4.3. PROFILES OF¥ (v, 1)

We now turn to the profile of (y, ¢) during various phases of the limit cycle. To illustrate the
different profiles, we show in Figure 7 the limit cycle fo= 0-011, which is the smallest value
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Figure 6. Lower line: plot of y. againste, where y, is the minimum value ofy,(r) over one cycle, and
F (y; (1), 1) = 0. Upper line: minimum value of + y,(r) over one cycle, plotted against
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Figure 7. The limit cycle fore = 0-011. The evolution of the solution from point 4 to point 6 is very rapid: for
example, the time interval from point 1 to point 2 is 9 time units, while that from point 4 to point 4 %tlne
units. Evolution around the limit cycle is clockwise.

Fopl(L1)

of e for which we have reliable numerical results, and in subsequent figures the corresponding
fixed+ profiles of .

Figure 8 shows the form aof (y, r) at time intervals of & between points 1 and 2 in
Figure 7. Here, the solution is approximately sinusoidal away from the walls and decays

20
15
10

20 1 1 )
-1 -0.5 0 0.5 1

Figure 8. Profiles of # on the limit cycle fore = 0-011. The profiles are shown at equal time intervals between
points 1 and 2 in Figure 7. The arrow shows increasinghe time interval between successive profiles-& 0
Evolution of £ during this phase of the limit cycle is relatively slow.
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Figure 9. Profiles of # on the limit cycle fore = 0-011. Also plotted is the axis, for ease of identifying the
interior zero ofF, y,(¢). The profiles are shown at equal time intervals between points 3 and 5 in Figure 7. The
arrow shows increasing The time interval between successive profiles & 0Note the rapid evolution of as

y; approaches its minimum distance from the upper wall.

30 T T T
20
10
0
-10
-20
-30

-40 ! : )

Figure 10. Profiles of# on the limit cycle fore = 0-011. The profiles are shown at equal time intervals between
points 4 and 6 in Figure 7. The arrow shows increasinbhe time interval between successive profiles-&10
Note the rapid evolution af during this phase.

slowly. The approach of the interior zepo to the upper wall is illustrated in Figure 9, which
shows the evolution of at time intervals of @1 between points 3 and 5. A fast phase, during
which y, decreases almost to zero, is shown in Figure 10, where the profffeioplotted at
time intervals of @01 between points 4 and 6.

Such numerical results are very helpful in clarifying the spatio-temporal evolution of
F(y, t) and now we turn to a small-asymptotic description of the limit cycle, restricting
the analysis to solutions that are periodic in time.

5. Time-dependent flows: asymptotics of the slow phases

5.1. AN EXACT SOLUTION

5.1.1. Formulation

We start this section by noting a class of exact solutions to (1); we shall subsequently explain
the asymptotic relevance of the results to the boundary-value problem (1-2) in the-isit

The class of solutions we consider takes the form

F =A@) + B(t)y + C(t)sin(h(t)y) + D(t) O (t)y). (39)
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10 20 30 40 50 60

Figure 11. Comparison between asymptotics and numerics fer 0-011. The solid lines represent numerical
simulations of (1-2), while the dashed lines give asymptotic results. The left- and right-hand sides of the plot
correspond, respectively, to points just after and just before point 6 on Figure 7; we thus show almost a complete
cycle. The upper curves show (7). The dashed line is the corresponding quantity calculated asymptotically by
solving F (y;(¢), 1) = 0, with ¥ (y, 1) given in (39) or (68); the quantitie$ and B are given in terms of’, D and

) in (44), these last three quantities evolving according to (45). The lower curves-stay(—p(¢))/5, where

the dashed line showsas given in (41).

this functional form having originally been identified through its repeated occurrence when
pursuing an asymptotic analysis of (1); once identified, it enables us to give a much more
concise presentation of that analysis than would otherwise be the case. Equation (1) is of
a quadratically nonlinear form, numerous other such systems amenable to low-dimensional
reductions akin to (39) having been previously identified (see, for example, [25] and [26]).
Unlike most earlier examples, however, (39) yields an underdetermined system when substi-
tuted in (1), enabling two boundary conditions to be imposed (see below; most applications
of previous examples were restricted to initial-value problems). Another noteworthy feature
of the current example is the appearance of a time-dependent wavelength, implying in partic-
ular the possibility of a smooth transition from trigonometric to hyperbolic functions with
becoming imaginary on passing through zero (a scenario we shall need to make use of later).

While the reduction (39) contains five degrees of freedom, substitution in (1) leads (some-
what remarkably) to three constraints only, hamely

dv \B

dr ’

dc

5 = —e02C 4+ 3BC 4+ 2\AD, (40)
dD )
5 = —e\N“D +3BD — \NAC.

From (3) we have
dB
5 = B 2+ DY) +p, (41)

which givesp(z) in terms of the other unknowns. It follows from (40) that

% (23(C? + DHY?) = —er>(C? + DHY2, (42)
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a combination which will prove important in what follows. Because the system (40) represents
only three constraints, we are able to impose two boundary conditions, the appropriate choice
at this stage (for reasons indicated below) being the ‘inviscid’ conditions

F(-1L1)=0, FL1 =1 (43)
giving

A=1-Dcos., B=1-Csim, (44)
and hence

(;—); = -1 (3 —Csin)),

%—f = —eM*C+3(3 — Csin))C + ) (3 — Dcosr) D, (45)

dD

o = —eX®D +3(3 — Csiny) D — (3 — Dcosh) C.
We shall discuss the solution to (45) subject to (for reasons which will again become clearer
later)

att=0 r=m, C=C/, D=-1 (46)

where C;(¢) — 400 ase — 0 in a manner which will be determined in Section 7. A
numerical solution to (45-46), together with a corresponding numerical simulation of (1-2),
is given in Figure 11. We now describe the limiting behaviour of (45-4&)-asO.

5.1.2. Slowest phases
The results for the first (large-amplitude) phase, corresponding to solutions roughly between
points 6 and 2 in Figure 7, are implicit in [15]. The appropriate scalings are (from (45))

t=¢'T, C=Ci(eC, n~mn, D~-1 (47)
it then following immediately from (42) that the leading order solution is simply

Co(T) =7, (48)
with

n 1
MT)~n— ————  ase — 0. (49)
2C;(e)Co

The other phase of slowest evolution corresponds te O (1), where

A 1

T = = log(C;(e)) + T (50)

with
A~ro(T), C~Co(T), D~ Do(T) ase — 0,
so that (from (42) and (45))

Cosindo = 3, Do COSho = 3, (51)
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and

oy -
d7 \ sin 2. sin 2o’

asT — —oo hg~ 7 — 1e"7,
where we have matched with (49); we note that 3in 2 0. We have
Ao \?
p sin 2o '

It follows from (52) that)o decreases monotonically until it reachies= ., where

3tan 2w = 2., o~ 2:039, (53)

at which point the solution suffers finite-time breakdown, with

2

Ao~ ke
T @2+

(T.o—T)Y*  asT — T (54)

for someT,q. This breakdown of the solution to (52) leads on to a sequence of increasingly
shorter timescales and we now describe the first of these.

5.1.3. Intermediate phase
The appropriate scalings here are

T = T.(¢) + €%/°1, N=he +€/3A, (55)

whereT,.(0) = T,9, and

1 1
C == e, D= 23 56
ZsmxJFE ¢ ZcosxJre (56)

The prediction of much faster evolution whemeaches the particular valag is noteworthy.
To leading order, (45) yields only two independent constraints, but a third is provided at once
by (42) (which thus acts as a solvability condition), giving the system

dA . dA
=0 Ae SINA. co, =0 Ae COSh. dp,
dr dr
(57)
2202 +3) dAy  _, dco . . Odo A
< A Ao cosh, — +sinh, — | = ———.
sin 2\, e e dt + d‘t) sin 2.,
Matching back as — —oo we have, by suitable choice of the originwin (55),
. 22 +3 £
SiN\. cg = COSA, do, A2+ 2N%co=—S(— 58
€0 0 2sin),  ° + koo 23|nxc( R (58)
and
dA 1
—0 = _— (-1 — @2 +3)AY), (59)

dt 2,
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so that

2. d (2222 +3)\"°

It follows from (59) that
2he 1
(222 +3) (t.0— 1)
for somet.o which can be expressed using (60) in terms of the first zero of the Airy function.

This blow-up in the current formulation requires consideration of the next (and final) phase of
this section, during which viscous effects play no role at leading order.

Ao’\“

ast — 1 (61)

5.1.4. Inviscid phase
We write

T = 1.(¢) + Y%7, (62)
wheret.(0) = 1.9, and let
x~no(f), C ~ Co(f), D ~ Dy(f) ase — 0,

these functions being distinct from those which appeared in Section 5.1.2. In (45) it is then
only the viscous terms that are negligible, so that

dro

dr

dCo

df

dDg

df

subject tohg — k¢, Co — 2SNk, Do — 3 cosk. asf — —oo, implying that

= —)\o (% —Co Sin)\o) ,

= 3(% = Cosinho) Co+ 2o (3 — Docosig) Do, (63)

= 3(3 — Cosinko) Do — ko (3 — Do cosho) Co,

A(CE+ DYY? =23/(—sin2,), (64)
a constantdf. (42)). The solution to (63) also suffers finite-time blow-up at 7.q, say, with

£ D,

~—*<  D~= 65
® 3sin2., I¥; (65)

for some constanb,., and

03 e 12 A
)\.0 ~ (m) (tCO - l') ast — tcO' (66)
It follows from (39), (44) that af = 7,

F ~ 30+ y) +3D.(1 -y — gCey(1 - y?), (67)

whereC, = 23/(—sin 2.,.). In terms of the solution to the inviscid RPJ equation, the apparent
singularity in (65—66) is thus illusory; in other words, there is no breakdown in the partial



Asymptotic analysis of the Berman probleh®5

differential equation itself but only in th@ensatzneeded to describe its solution, which ceases
to be of the form (39) and becomes

F =A@t) + B@t)y — I'(t) sinh(u(z)y) + D(t) cosh(u(t)y), (68)

which corresponds to setting = i, C = il in (39), the asymptotic solution shown in
Figure 11 having been constructed by solving (45) numerically farz. and the analogous
system for (68—69) for > r., proceeding through = ¢, via (67); blow-up behaviour of the
form (65-66) applies to the full system (45) as well as toethe 0 limit. We now have

A=3%-Dcoshp, B=3+Tsinhp (69)

and, instead of (63),

du .
dfo = —po (5 + Iosinhpo) ,
dlg 1 : 1
ril 3(5 + Tosinhpo) o + o (5 — Do coshiig) Do, (70)
dDy 3(L inh 1 h
7 = (5 + I'psin Mo) Do+ o (5 — Dgcos MO) g,

with, in place of (64),
w3 (M2 — D)2 =23/(—sin2.,). (71)

Initial conditions on (70) are

203 PN 2 - o
o ~ <7‘) (t— tco)l/ ast — 1

—sin 2.,
with
S D.
o~ 3—0 D ~ __;'
Mg Sin 2k, (Vs

The solution to (70) blows up in finite time, at= 7, say, and we need to describe this
blow-up behaviour in some detail. As— 7,,, we havew, — +oo with I'o ~ — Dy so that

dio dDo
i SoDoe", T %Mnge”O - nge”O, (72)

from which it follows that
Do ~ Dppigye"
for some constanb, and hence that as— t};o,
wo ~ —3log(io — 1) + log(— log(iyo — 1)) — 3 log D, — log 2,
(73)
4D}/
(fpo — D)Y2(—log(tyo — 1))2

Dq
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The asymptotic behaviour of
Fo = (% — Dg COShLLo) + (% +Io Sinhuo) y—To sinh(uoy) + Dg COSI’(LLoy) (74)

therefore subdivides into three regions'as 7,,, as follows.
N y=0(@) withy < 1.

1

For~ =1 (1 +). 75
° (fyo — 1) (— log(fpo — t))( Y) (75)
(N1 —y=0(@/(=log(iro — ))).
2 ~ A
Fo~ o Tlogta =y (L @I0gGo N1 - )/2). (76)
(”I) 1- y= O(fbo — f)
Fo~1-— Al;yA, (77)
fho — t

so that the interior zero of satisfies
Y, ™~ 1-— (be — f) an — fl:O (78)

It is noteworthy that none of these leading-order expressions depends on

Unlike (65-66), this form of singularity in the solution is genuine, rather than simply
reflecting a straightforward change in the appropriate representation of the solution. In other
words, whery becomes sufficiently close gy, the ansatz(68) ceases to apply and a quite
different approach is needed. We discuss the behaviour of this next phase in Section 6. Having
been of0 (1) for { = O(1) (during which it reaches its minimum value},p blows up asyo
is approached (cFigure 11) according to

1
(B — D2(—log(iy — 1))?

p~ ast — 1. (79)

5.2. OTrHER REGIONS

5.2.1. Preliminaries
The solution (39), (68), subject to (43), provides an asymptotic description of the behaviour
away from the boundary layers at= +1. The purpose of the current subsection is to describe
these boundary layers and to indicate why the interior layer located about the Z&f@vbich
played such a crucial role in Section 3.4) does not need separate treatment here. The other
issue which needs to be resolved in order to demonstrate the applicability of (39) concerns the
initial data; it is necessary for the above reduction to be valid that (39), (44) (together with
(46)) apply to leading order at= 0. Since we are seeking solutions which are periodic in
time, this is a point to which we shall have to return at the end of the analysis.

It is instructive to note next the balances in (1) which correspond to the various timescales
in Section 5.1. On the slow timescales of Section 5.1.2, the dominant balance is inviscid and
quasi-steady; from

€Fyyr = €Fyyyy + FyFyy — FFyyy (80)
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we have at leading order
FoyFoyy — FoFoyyy =0, (81)
so, imposing (43), we find

sinho(T)(y + 1) (82)
sin2(7)

Fo=

the quantityho(T) is not determined by the inviscid balance (81) but requires consideration of
the interior layer (as outlined below); its calculation is automatically included in the analysis
of (39) because thansatzencompasses both the outer regigns 0O(1), -1 < y < y, and
vy, <y < 1, and the viscous interior layer about= y,.

The timescale of Section 5.1.3 is the one for which the use ctisatz(39) leads to the
greatest gain in brevity; basing the discussion on (1) instead would require the consideration
of the first two correction terms to the leading-order outer solution

sinh.(y + 1)
sin 2.,

which is independent of, together with their matching into the interior layer. Corresponding
to Section 5.1.4, we have the inviscid leading-order balance

Fo=

F Oyyl = FoyFoyy — FoFoyyy, (83)
‘7:0(_1’ i) = 0, ?0(17 i) = 1 (84)

Two boundary conditions are sufficient here, despite (83) being third orderas explained
in [15] (see also Appendix A.1), (83) has partly hyperbolic nature, with characteristic projec-
tions given by

dy

a0
and, because of (84), these carry information out of the fluid domain (in other words, the
conditions (84) and the initial data are sufficient to deternfipeno new characteristics being
generated at the boundaries). A crucial (and rather delicate) issue later will be to find balances
whereby information is propagated back into the fluid from a viscous boundary layer (were
this not possible the blow-up in (75-77) could not be obviated, because viscous effects could
not influence (83), the solution to which suffers blow-up &t 7).

We are now in a position to discuss the two boundary layers and the interior layer.

5.2.2. Boundary layer ay = —1 .
If we write F = €'/2G, y = —1 + €'/2Y, Equation (80) yields fof’ = O(1)

901?_1?1?1? + GorGory — $0Goriv = O,

atY =0 9,0:9,0};:0’

asyY — +oo  Go~ Fo,(—1,T)Y,
where¥y is given by (82). The scalings

—1/2 =

Go=(~Fo,(-1.T))"*G(6), ¥ =(~Fo,(-1.T)) %
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reduce this to a standard Falkner—Skan problefrSection 3.3 above and Section 3 of [7]).
For7 = O(1) we obtain the full balance in (1), with

9_’0)_:}7? = 9_’0)7)7)_:)7 + 9_’_0)79_’0)7}7 - 9090}7}7}7’
a7 =0 §o=Goj =0, (85)
asY — +oo 9_>0 ~ ?oy(—l, i)?,

where %y is the solution to (83—84). Little more can usefully be said about (85); its solution
does not in any case influence the behaviour elsewhere. The other timescales of Section 5.1
do not warrant separate discussion.

5.2.3. Boundary layer aty = 1
From

F=14¢4, y=1+4¢Y (86)
we find, on any of the timescales of Section 5.2,
Govyyy — Gorvy =0,
atY =0 g,ozgoyzo,
asY — —oo  §o~ Fol,_,Y.
so that
Go=Fo,|,_, (Y +1—€). (87)

5.2.4. Interior layer aty = y,
With the interior zero off aty = y,(¢; €), for T = O(1) the inner scalings are

y=y.(T; ) + €%z, F =%, (88)
giving a balance in which the viscous term appears at leading order, namely
dy.
€877 — Gl/zd_,lfgzzz = 8zzzz + 878zz — 88zzz- (89)

From (82) we have
T
Y(T;0) = — — 1=y
o
and
Fo = Foyy = Fopyyy =0 aty = yo(1),
so if in (89) we write

3/2

g~ go+e%g1+egr+ g+ %y

we obtain

go = Foy(y.0. Tz, gr=a1(T)z, go=o02(T)z+ %\{/‘:Oyyy(yzo’ T)z3,

dy.o Foyyy (y:0, T)
19z yyy\Jz 2 3

5 725+ B3(T)z>, 90
2 dr 3 Oy(yzo’ T) s ( )

g3 =0a3(T)z —
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where the calculation af,, oy, a3 andfz would require the construction of correction terms
to the outer solution; they need not concern us here. The crucial equation arises from the
z derivative of (89) a0 (€?), giving

d
Gy, — ?Oy(yZOv T)zG4 = gorzzr — g%zz = ﬁ ($Oyyy(yz07 T)) - ?'ozyyy(yzo’ T)Zz7 (91)
whereG,4 = g4,,... SinceGy is required not to grow exponentially &§ — oo, we obtain
from (91) that
_ o 00 2y
?Oy(yzo’ T)

together with the solvability condition

Foy 020, T) :

d
iy (?Oyyy(yzo, T)) = (92)

dr Foy(y:0, T)
since
o0 T) = — 0 T (o, T) = 2
oy (Yz0, = sin 2}\07 Oyyy (Y20, = Sin 2}\0

we thus recover (52), thereby completely specifying the outer solution (82).

There are two important points to make about the above. The first is that at each order
the inner solution is simply a polynomial iy so the upshot of the inner analysise( of
the effects of viscosity) is that the outer solution is required at each order to be analytic at
y = y,0; given this constraint, (92) can instead be derived solely by consideration of the outer
expansion. Secondly, the time derivative in (91) is crucial in suppressing exponential growth
via the solvability condition (92). As is implicit in Section 3.4, in the steady-state problem
exponential growth cannot in general be eliminated in an interior layer about a zeto of
at which f, > 0 and this feature is crucial in showing that the interior layer described in
Section 3.4.2 must lie close to = 1. By contrast, in the time-dependent problgmcan
be placed anywhere, but must evolve in a way which suppresses the exponential growth that
would otherwise be present (hamely, according to (92)).

The above solvability condition can be viewed as arising from the viscous effects in the
interior layer. The situation far = O (1) is rather different, the interior layer being passive as
far as the matching is concerned, viscous effects playing no role in the solution to (83—84). In
this case the inner scalings are

y=yt:e)+ez,  F =€
with
. dy. . . AnA an
€8z27 — d—;gzzz = &z2; +€(8283 — 88:32)- (93)

Hence at each order one has

A dyzOA | ial in?
8nz2zz + o 8= polynomial inz,
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which itself has a polynomial solution and does not lead to a solvability condition. The
corresponding equation for (89) reads

8nzzzz T $Oy(y10’ T)gnzz - ?'O(yzo’ T)Zgnzzz = polynomial inz,

a solvability condition on the right-hand side arising at each order on requiring,tHet a
polynomial (or, equivalently, that exponential growth be absent) because the left-hand side
vanishes fog, = z°.

This completes our description of the slower phases of evolution, which can be described
most concisely via (39) and (68). We shall shortly see that a similar expression (see (154))
plays an important role during one of the faster phases, though the first (and most important)
of these, discussed next, requires a quite different approach.

6. Time-dependent flows: the phases of closest approach

6.1. FORMULATION

The results (77-78) and (86—87) each indicate that the preceding analysis breaks down on the
timescalel = O(1), where

i =iy + T, 54
with 7,(0) = #,0. On this timescale we have at leading order

Foyi = Foryy + .'7702Y — FoFory,

aty =0 Fo=1For =0, (95)
asy > —co  Fo~Y/(=T),

Fo~14+ ¥ +1—€)/(=T) fory =0(),

T — — - .
ast = —o¢ { Fo~1+Y/(—T) fory = 0(—T),

where we have matched with (77) and (87). The initial-boundary-value problem (95) is a
crucial one, describing the manner in which viscous effects serve to reduce the rate at which
the interior zero approaches the right-hand boundanachieving its closest approach to

y = 1 (whereby 1— y, = O(e)) on this timescale.

The formulation (95) is the one of most significance for= 0(1) and is discussed is
Sections 6.2—-6.4 below; the scalings which apply on this timescale in the other regions are as
follows.

(A) Y =Y /elog(l/e), F = ¥ /elog(1/e),

giving
. fy A
Fort = Fop — FoFopys
aty =0 F,=0, (96)

as¥ — —oo ﬁo? — 0,
asT — —co  Fo~—-21—€7?/(~T),
where we have matched with (76); the solution to (96) is separable, giving

Fo=—21—€&"2)/(=T). (97)
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B)y=0@), F~ Foly, 1),
implying
Fouyi =0, (98)

Oyy

so imposing¥, = 0 ony = —1 and matching with (75) and (97), we find

Fo=—-1+y/(-1). (99)
The pressure coefficient is determined by this region, giving
1

~

 log?(1/e)(—T)2

C)y=—-1+ey. F =§/log1/e),
where, at leading order,
goyyf = 905:‘"5‘5‘
aty =0  Go=Goy =0, (100)
asy — oo Go~ —3/(=T);
initial conditions on (100) a§’ — —oo must be deduced from the behaviour of (85) as
i — 1,0, Namely

_ 1 Y
Gy~ —— S—Y (101)
" (ho— 1) (~l0g (o 7)) (( - ,)1/2)
with
D) = —1 + V7 (1 _ e’/erfe(n /2)) : (102)

the nonlinear terms in (85) being negligible. From this it follows that the required solution to
(100) is

. 1 b
Go = (_f)l/ZCD ((_f)m) , (103)

with @ (1) again given by (102).

We now return to (95), the most important feature of which is its behaviour in the limit
T — 0~; however, to obtain a sufficiently complete description of this we must first analyse
the limits7 — —oo andY — —oo, considering an exponentially small correction term to

Fo~Y/(=T)+ Yso(T)  asYy - —oo (104)
whereY, is determined as part of the solution to (95).
6.2. THELMIT T — —o0
In (104), it follows from (95) that

Yoo T) ~ 14+ 1/(=T)  asT — —oo. (105)
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The formulation (95) already contains the behaviouf'as> —oo with ¥ = O(1); since we
shall also require an exponentially small correction term¥fee O(—T), we write

Fo~Y/(=T)+ Youo(T)+ E

and linearise irE to give

E; = Eyy + 2 p_ ( . Yoo> Ey. (106)
(=7) (=7)

Introducingt = Y /(—T) and using (105), we have

1 3 N
—AECC — < E§ + ~ E asT — —oo. (107)
(=T)? (=T)? (=7)

1
Ej + ——(X + DE, ~
7 7 C ¢

In view of the need to match &s — 0~ into the term—e’ /(—T) in (95), the required
expansion for (107) in the limil' - —oo takes the WKBJ form

1 o
E ~ ——ap(r)e "0, (108)
—-T

implying

¢ — (2 + D = 7, (109)
in which the right-hand side represents the contribution of viscosity, and

ao + (2 + Dag, = —2rag; — deao + deao + 3ao, (110)
subject to

é~-t, a—~>-1 asgt—>0".

Equation (109) can be reduced to autonomous form by writieg (¢ + %)Zw(log lc+ %|),
yielding

(Vor@r122+c+12) (2/o+@r1/22 - +12)=1/2  (@11)
from which it follows that
o~ 30M — 1 /30 H o) ast > —oo. (112)
Using (109), we obtain the required solution to (110) as
e P 1
(=003 (= (2 + 1+ 2¢)) 1/’

ao = (113)

so that

e7163/2
ag ~ —W(—C) a.SC — —OQ. (114)
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6.3. THELIMIT Y — —o0

The way in which the blow-up behaviour of (95) in the lindit— 0~ is selected is some-
what similar to that in which the minimum-speed travelling wave is selected by appropriate
initial-value problems for Fisher’'s equation (an analogy we expand upon in Appendix A.2 by
discussing possible similarity solutions to the inviscid RPJ equation). In particular, a crucial
step involves determining an exponentially small term in the far-field behaviour of (95).

The relevant balance is again given by (106), but the viscous term is negligible in the limit
Y — —oo (as is the case in the terms given in (112)), so that

1 . ) T

E~——E[(TY - / (=T") Yoo (T dT’ (115)
(=T)3

for some functionZ (&) which cannot be determined fér = O (1) without solving the full

problem but which, by use of (112-114), satisfies

~133/2

E(®) ~ ——g— (- RO asd - —oo. (116)

6.4, THELMIT T — O~

We are now in a position to address the blow-up behaviour of (95). In the dimit 0~ we
have

Fo~ F(Y) forY =0() (117)
with
F0 =1 Fy0 =0 (118)

F.(Y)forY > 0 depends on the evolution over earlier times and cannot be determined without
solving the full problem.

For large—Y, specifically for—Y = O(—log(—7)/(—T)), the appropriate balance as
7 — 0~ is of the form

—log(—T Y(-T
Fo~ — X Do), =D (119)
(=T)? —log(-T7)
(see Appendix A.2 for related considerations) with
Qe — EQee = QF — QQus, (120)

the viscous term being negligible, so that
Q(E) = & + & — Eoe™/®0 (121)
for some constanty. Matching with (116) a§ — —oo (a procedure which involves the
matching of exponentially small terms) implies tijat= 3 with
3(—log(-T)) 3log(—log(—T 9log 3
(—log( ))+ g(—log( ))+ g

. . > asT — 0, (122)
(=T)? (=T)? 2(—T)?

Yoo (T) ~
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indicating the time-dependence of the next two terms required in the expansion (119). It
follows from the behaviour of (121) &— 0~ thatin (117) we have

Fo(Y)~ —3¥%/log(-Y)  asY — —oo, (123)
so on this timescale the interior zero $f tends to some fixed locatiohh = Y,(¢) = O(2),
where#.(Y,0) = 0, this representing its closest approach to the right-hand boundary.

6.5. TURN-AROUND TIME SCALE: T = 0(1/log(1/¢))

We conclude this section by discussing an intermediate timescale on which (117) ceases to
apply (it does not in fact persist for very long) but (97), (99) and (119) remain applicable. On
the timescalg'* = O(1), where

T = T*/log(1/e), (124)
we have that the pressure coefficient
__ log(1/e)
2(—TH2’
for Y = O(1) we thus have

1

T Fo= Fo(Y) = Y/(—=T¥) (125)

Foyrt =

for T* = 0O(1), showing how the interior zero of begins to move inwards (further away
from y = 1) on this time scale. There is also a subsidiary boundary layefwithO (1/ log/?
(1/¢)), which is required to satisfy the conditidfi, = 0 ony = 1.

7. Time-dependent flows: asymptotics of the fastest phases
7.1. T = O(elog?(1/¢))

7.1.1. Preamble
This is the timescale on which it follows from (119) that the boundary layer (95) merges with
the intermediate region described by (96-97). We write

T = elog?(1/e)x, F = H/?log’(1/e), (126)
s0 (119) implies the matching condition
1 s
Ho ~ ——Q(§), E=Y(-1) (127)
(=0

ast — —oo with ¥ = 0(1/(—%)), where
Q) =&+ 3363 (128)

Away fromy = 1, the analysis of Section 5.1.4 is still pertinent on earlier timescales, so (76)
implies the matching condition

Ho~ ——t (1 - e?) (129)
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ast - —ocowith ¥ = 0(D).
We have forY = O (1) the inviscid balance that

Hoj: = Hg, — HoHoyy. (130)
In view of (125) the boundary conditions on (130) are

. 102
asY - 0~ Hp 6Y,} (131)

asy — —oo Hy — 0,

where we have matched #s— —oo. We now present the solution to (130) subject to (127),
(129) and (131).

7.1.2. Boundary layer solution

The approach outlined in Appendix A.1 can be used to derive the required solution. Omitting
the details of the derivation, we find the solution in terms of a paramefehich parametrises

the characteristics of (130)) in the form

£ OOL . OOL
Y__/;,- el —r—1’ Ho = /c, (&R -t —%)2 (132)

The crucial characteristics have
Y(—%) = —3log(—%) + 0(1)  ast — —oo, (133)

and thus lie in the overlap regime between (127) and (129); (132) is thus best derived from a
composite (uniformly valid) representation such as

Ho ~ (_3;)2 (1 - e<*f>9/3) - (_—11) (1 - ef) ast — —oo. (134)
In addition to (132), we have
Ho = o Hygy = —2o L (135)
eis—g — 1 ory gild—g -1
so that
Hyp =0 on the characteristic = 3log 3. (136)

For matching purposes we need the following consequences of (132). Firstly,

00 de .
HO ~ —/oo m asYy — —oo. (137)

Secondly,H, blows up ast — 1., where
T.=—3(log3—-1). (138)

It then follows, if we use (132) along the characteristics wjth= 3log 3+ O((Z. — 1)¥?)
(cf. (136)), that

Y 31/2 [ 2V2i;, — Y2y
sin ,

Ho (139)

T 23 -1 2BR(F. )2 312
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for ¥ = O((, — ?)~Y/?) with —6Y25 < Y (3, — })¥2 < 0, and

32y

s 5 (140)

Ho’\-'

for Y = 0(G. — 9)Y?) with Y&, — H¥2 < —6Y2x, consistent with (137). Appen-
dix A.2 clarifies why (139-140) is the self-similar form appropriate for describing the current
intermediate asymptotic behaviour.

Ast — i with ¥ = O(1) we have that

Ho ~ H.(Y), (141)

whereH. is given by

A o0 d o d
Y:—/ . ¢ , HC:—/ . ‘ . (142)
g €7 —t+3(log3-1) i (&3 —1t+3(log3-1))
so that
1,2 " — 1v3 %
H.~-172 as¥ -0, H.~ 7% as? — —oo, (143)
consistent with (131) and matching with (139). Finally, there is a similar region with
Y =Y.3)+0Q, whereY, ~ —6Y2x (3, — 1)~1/2,
which provides a smooth transition between (139) and (140); we omit details, however.

7.1.3. Other regions .
Fory = 0(1) we have €f. (98-99)), writingH ~ Hy(y, 1), that

Hoyy: =0
so that
. 1 [ de
Hy=—= S — 1 144
=3 | @+ D, (144)

where we have matched with (137). This implies that
32y
C23/2(7, — 7)3/2

Lastly, the analogous region to that described by (100) has

Ho ~ (y+1  ast— 1. (145)
y = —1+ €¥?log(1/¢)7, F = H/eY?log?(1/¢€) (146)
with, by use of (101),
Hoss: = Hosss,
aty:O J€0=J€0;=O,
asj — +oo Jb N_z/""L~
g T @R ——2”
A 7 <0 m1/2
ast — —oo Ho 72(_%)1/2<b(y/( Y3,

(147)
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where® () is given by (102) (we note that, as with (100), the nonlinear terms in (1) are of
relative sizeO(1/log(1/€)) here, so are only just negligible in (147)). In view of (145) we
have blow-up behaviour of the form

- 1 y A al
Ho ~ s v <(%C = %)1/2) ast — 1_, (148)
where
1/2 2 .
v = — 577 n(1—e"/*erfc (3n)). (149)

7.2. 1 =1%.4 0(1/log?*(1/¢))

We now discuss the final, and fastest, phase of evolution, in which the interior zero moves
rapidly from the neighbourhood gf = 1 to that ofy = 0. We write

t =1+ 7/log?(1/e), F = H/e, (150)

this being (in view of (139-140)) the timescale on which the boundary layer of Section 7.1.2
merges with the outer region. At leading order we have in the outer regierO (1) that

Jnyy'_c = =3l€0y=3l€0yy - RO”O)’)‘)W (151)

i.e.an inviscid balance but, in contrast to (130), one in which a non-zero pressure coefficient
Po(T) is to be determined as part of the solution to (151), with

p~Po(@/€t,  Hopw = HG, — Hodoyy + Po(3). (152)

From (145) we have

/2

Ho ~ T B2(—7)32

y+21 ast — —oowithy = 0(2) (153)
and, since#ty,, = 0 holds for all time along characteristics of (151) if it does so initially, we
are motivated to seek a solution of the form

Ho = —AD (L~ y) + B(D siN(MD(L—y) y > $(3), }

Ho = —E@)(y + 1) v < 8(9), (154)

for some$(T) which is to be determined as part of the solution. The admissibility of such
a ‘two part’ solution stems from the hyperbolic character of (151) and from matching with
(139-140), which imply that

(1-y gz M ()t N __t(@155)
Ho ~ — 2(—7) + 23/2(_%)3/2 sin 3172 (1-y)) ast — —o0,y > $(0);

in writing down (154) we have used the fact tl#g,, = 0 on y= 1 as well as iny < 4(7),
the characteristic projections of (151) satisfying

— = J,,
dz 0
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so thaty = 1 is a characteristic, as is= 4(7). The analyticity of the solution is maintained
via an interior layer abouf (7) (cf. the discussion of Appendix A.2). The continuity conditions
on (154) are

aty = 4(9) [%0]1_ = [%0)]1_ = [ROyy]i_ =0,
and from these and (151) it is straightforward to deduce that, up to translations in

N2+ k4 n?log(h — ) = 3(—0),
27 A—T 1 oL (156)

521—T, A:*, c(B:T, 8:T
n 33 33 33

It follows that ast — +o0

x— 7w, 85— (=17, (157)
at an exponentially fast rate, with

1 -
Ho ~ —= sin(my) fory > 8(3), (158)
3n3

which brings us full circle back to (46), confirming that thasatz(39) is appropriate and
identifying the final unknown as

Ci(e) ~ (159)

3m3e?’
and completing the analysis of the limit cycle behaviour. Bsttand — p attain their maxi-
mum values a§ — +oo (cf. Figure 10), with

1
Omde?’

Viscous effects now come back into play, with the solution decaying slowly due to viscous
dissipation, as described by (47-48).

The final loose ends concern the behaviour in the boundary layers on this timescale; the
relevant scalings are = +1 + 0(¢¥?) and ¥ = O0(e%/?), and the full balance occurs at
leading order in both the boundary layers (in view of (157), the range $(T) merges into
the left-hand boundary layer for sufficiently large In the right-hand boundary layer, there
is again an intermediate timescale, analogous to that discussed in Section 6.5, on which (141)
ceases to hold. Since

pN_

b1 27?2
70= 35 i —
we have
3P/2y

o O ——— T —
J°0 25/2(_._05/2 ast — —oo

and the relevant timescale is

7 = log*3(1/e)t*
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with
3P¥/2x A 3Y2ny
Hypox = _25/2(_11)5/2’ Ho = Hc(Y) — 28/2(—1¥)3/2° (161)
A noteworthy reinterpretation of (154) involves consideration of the quantity
Iy, 1) = 3:)2” — FyyFyyyy-
Fore = 0 it follows from (1) that
I, = -¥T1, (162)
so thatlT is constant along characteristics; moreover, forgrigr which
2
I, + FI1, = (?— <3~“yyyy1'l — ?yyyl'ly) + I'Iyy> , (163)
yy

the ansatz(39) corresponds exactly @ (= 26(C? + D?)) being independent of, whereby
Fyyyy = —A2F,, and (163) reduces to (42). The solution (154) Rapiecewise constant (a
feature first established by the intermediate asymptotic similarity solution (139-140)), with
its value iny < 4(%) (zero for the leading-order soluticHy) being the remnant after viscous
dissipation ¢f. (42)) of the previous oscillation. This ‘old’ value is swept out by a ‘new’ one
(the one which holds i > §(3)) whose value is that required to obtain periodic behaviour
by decaying to the ‘old’ value in the course of the oscillation. With this interpretation, the
leading-order value ofl (~ 1/9*) can be deduced (given (162)) from the second of (143),
without any need to solve (151). Indeed, the details of the analysis of Section 7.1 can also be
circumvented — the solutions (127) and (129) each correspofidtd), so the characteristics

on which IT is non-zero emanate from the overlap region (133); the blow-up behaviour is
dominated by the characteristic on whiely;; = 0, so thatH,; is maximal, and this satisfies

Y ~ —log(3(-%)) ast— —oo
(-1
and has, by use of (134)] ~ 1/9¢*. Since the blow-up behaviour (139-140) dictates the
subsequent evolution, this determines the ‘new’ valuH pthe calculation just given empha-
sises the importance of the composite expression of (134) in describing the overlap between
the ranges of validity of (127) and (129), as well as the crucial role played by the timescale
of Section 6, since this can be viewed as being responsible for the ‘new’ value. PIGtting
from the numerical solutions of Section 4 provides (given the relatively large valuesof
the simulations) strong support for the scenario described above.

8. Discussion

The asymptotic analysis of the time-dependent problem outlined above leads to a remarkable
degree of analytical progress, involving a variety of nonlinear techniques. The key aspects
of the evolution are described by the low-dimensional reduction of Section 5 and by the
a = 1 and a= 1/2 similarity solutions of Appendix A.2 (which can be viewed as similarity
solutions of the second kindf. [27], albeit selected in a rather delicate way); in addition

the determination of the values of the constants in (121) and (139), correspondigdnto
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each of (A12) and (A13), requires respectively the matching of exponentially small terms and
the solution of (130) by characteristic methods. Detailed comparison between numerical and
asymptotic results is not currently possible, largely because the numerical approach cannot be
applied withe small enough for a convincing comparison, particularly given the prevalence
of terms in log1l/¢) in many of the expansions; nevertheless, a comparison based on crude
extrapolation t& — 0 of quantities obtained numerically for a varietyegfields encouraging
results. Moreover, the asymptotic results successfully capture all the qualitative features of the
numerics €f. Figure 5 in particular), as well as the orders of magnitude of the various quanti-
ties. Thus the asymptotic approach is currently the only way to construct the limit cycles for
very smalle and is very valuable in clarifying how the evolution proceeds and why numerical
approaches encounter difficulties wheis small (in particular, the period of the oscillation
scales a$ = 0(log(1/¢)/¢) (see (50);(log(C;(¢))/m? + T.o) /e provides an estimate of the
period), while on the fastest phase (see (150%ries by ar0 (€?) amount). While the analysis
is sufficiently complicated that the validity of all the algebraic details cannot of course be
guaranteed, the approach of Appendix A.2 provides independent verification of the key role
played by thex = 1 anda = 1/2 similarity solutions; the values ofy in (A12) and (A13)
cannot be determined solely by such an approach, though, so these two constants are likely to
be the quantities most susceptible to error.

The inviscid version of the RPJ equation

Fopr = FoyFoyy — FoFoyyy.  Foy = Fgo — FoFoyy + pot)

plays a central role in our analysis and has characteristic projections

dy
— = Fo(y,t 164
o oy, 1) (164)
on which
dFo, . d%o,y o~
dl‘} = fozy + PO(f), TN = ny Oyy (165)

(cf. Appendix A.1; the Lagrangian equation feicorresponding to (164) is

dx

n = —xFo,(y, 1),

it being noteworthy that this furnishes the linearising transformation for the Riccati equation
given by the first of (165). Moreover, from (4) we have

dFo R d
? = —Dy, E(X?'Oyy) =0,

the second of which corresponds to vorticity conservation along characteristics). An issue
alluded to above concerns the fact that it follows from (164) that the characteristics acar

leave the fluid domain (sinc&q(1, 1) = 1), whereas information needs to be fed back into
the fluid for the solution to remain bounded and for the limit cycle to turn around. This is
accomplished in two ways. During the later stages of turn-around on& has1 so that (as

in (131)) the leading-order inviscid problem sees zero normal velocity at the wall and there
is within the leading-order formulatiorcf; (127), (129)) an infinite amount of time for the
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information to propagate in. More noteworthy, however, are the earlier stages of this process;
if we write

N

F~ Y ma(@©F (v, 1) + vo(©)Wo(y, Ne O ase — 0,
n=0

wherepo(e) = 1 and the summation gives the algebraic expansior#fowith & (¢) being

its optimal truncation point (such a procedure enables the exponentially small term to be
legitimately separated off in very general contexfs[28]), then (away from Stokes lines, of
which we avoid discussion here) we have from (1) that

P, = —D2 — F,. (166)
Equation (166) has characteristic projections

dy

P Fo(y, 1) +20,(y, 1), (167)
the final term of which represents the effects of viscosity; since the constiits) = 0,
®,(1,1) = —1 are required in order to match into the viscous boundary layer, (167) implies

that information does indeed propagate back into the fluid, a feature which underpins the
matching of exponentially small terms in Section 6.

The reduction (39), (68) is noteworthy for a number of reasons. Firstly, it provides a large
family of exact solutions to the incompressible Navier—Stokes equations, for which some
generalisations are available — for example, via solutions of thedoenW (y, t) —x F (y, 1),

p = p(y, 1) +xP(t) + x?p(t)/2 satisfying (3), (4) and

Wy, = eV, + W, F, — FU,, — P(1);

of course, in the Navier—Stokes (rather than RPJ) context there are important issues concerning
the stability or otherwise of the solutions we have described. Secondly, it plays a very valuable
(and concise) role in providing a uniformly valid description of the outer behaviour over each
of the timescales discussed in Section 5.1; we stress that this reduction is valid in the current
context only in the asymptotic limié — 0, for which it provides an immense saving in
computational time. The concept of a uniformly valid expansion is very well-established (see,
for example, [29]), but such examples motivate us to comment on ‘uniformly valid equations’,
whereby the original formulation is replaced by a simpler one which has the same asymptotic
behaviour; the resulting simplified formulation may be very convenient for numerical (as well
as asymptotic) studies, particularly when the stiffness of the original problem can be removed
in this fashion. The concept can be illustrated by giving a reinterpretation of an example
discussed in Appendix 1 of [30], namely

u; = ((u + e)’"ux)x (168)

with0 < € <« 1,m > 0. Fore = 0, Equation (168) has compactly supported solutions and
an analysis of the limi¢ — O clarifies how this property is lost for positi¢ea very concise
presentation of such a limit (which is guided by the asymptotics) introduces the quantity

v = / (M - €—> du’ + €" logu, (169)
0

u’ u
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giving the uniformly valid leading-order equation
vor = mvoH (Vo) voux + Vg, (170)

whereH is the Heaviside step function. Equation (170) encompasses each of the three regions
appearing in [30] in a single equation and makes explicit the hyperbolic character of the
low concentration tail. Moreover, the simplification to (170) permits a family of similarity
solutions, notably

vy = tfm/(m+2)v(x/tl/(m+2))’ (171)

not shared by the full equation (168); (171) provides a uniformly valid expression of the
asymptotic behaviour fod-function initial data foru. It is worth noting that, because the
nonlinearity in (170) is not analytic ing, care is needed when applying classical Lie group
techniques to identify such similarity reductions.

We conclude by drawing together the analyses of the steady-state and time-dependent
problems by outlining for smadithe role played in the transient problem by the unstable equi-
librium solution. It is noteworthy that the outer steady-state solution (29) is of the form (39),
but the relationship between the two problems is somewhat subtle, with no region completely
analogous to the interior layer of Section 3.4.2 featuring in the time-dependent analysis. When
the steady-state solution is perturbed, time-dependent effects make their first appearance in the
0 (v?) term of (23), thereby introducing a time derivative into (28); a number of timescales are
needed to describe this, each having= O (log?(1/¢)) for someg. The conclusion regarding
the behaviour subsequent to these timescales is that if the steady state is (roughly speaking)
perturbed by moving the interior zero towards= 0, then the solution quickly locks onto
the (slow) viscous-dominated phase of evolution (51-52), the instability of the steady state
corresponding to the instability from above of the fixed paipt= 7t/2 of (52), from which
o then increases ta. (leading onto the faster phases). Conversely, if the interior zero is
perturbed towards = 1, the solution instead enters the (fast) inviscid phase, given by (63)
with the %’s negligible becaus®, > 1. In view of (29), (31), the relevant scalings are

7 = elog(1/e)t*, Do = D /elog(1/e), Co = Cl/elog(1/e),
with
: 1 ¥ - ¥
Dy — I Cy— 0, ho = (11/2) ast* — —oo,

from which it follows that

1 3 3
pi=—— (2 sinn ct= (= COSh
0™ " 21 \ 20 0 0™ " 2ax \ 20 0

and
dio 1 /mt\3sin2y
- _ (= 172
dr¥ 8x (2) )»3 ’ (172)

the instability of the steady state corresponding to (172) also having an unstable fixed point
at \g = m/2. The solution to (172) then drops to zewmd. (66)), leading onto behaviour
comparable to that described above. The unstable steady state can thus be viewed as providing
a borderline between initial conditions which evolve onto the slow part of the limit cycle (with
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v, initially decreasing) and those which lead rapidly into the fast phases fwittiready close
to y = 1 for the steady state, initially increasing).

Our ordinary differential equation results of Section 3 are of sufficient accuracy to provide
viable representations of the steady-state behaviour for Rrgehile the partial differential
eqguation results of Sections 4—7 are of practical value in describing the evolution of the RPJ
equation in that no straightforward and suitable numerical approach is available for even quite
moderately largeR; the extent of analytical progress that is possible here makes the asymptotic
approach particularly worthwhile. Furthermore, as with many asymptotic studies, valuable
insight is provided into the dominant physical balances which occur.

9. Concluding remarks

We hope that the detailed analysis of (1) described above is of interest both from the point
of view of asymptotic methods and in view of its relevance as a paradigm problem for the
time-dependent Navier—Stokes equations. The variety of asymptotic approaches needed is
highlighted at the beginning of Section 8 and the analysis illustrates some of the complexities
which arise in studying the asymptotics of time-dependent, spatially heterogeneous solutions
to partial differential equations, specifically those exhibiting time dependence in the form of
relaxation oscillations.

In the symmetrical version of (1-2), with equal fluid suction velocities at each channel
wall, temporally chaotic solutions are found in numerical simulations at moderate Reynolds
number [9, 15]. These solutions are analogous to chaotic solutions to the Lorenz system of
three ordinary differential equations: the velocity profile may ‘flip’ about the centreyliae0
of the channel in an apparently random fashion, just as solutions to the Lorenz system flip
between the two wings of the Lorenz attractor. Whether the approaches outlined above would
prove equally efficacious in analysing such chaotic behaviour is an intriguing open question.
A less speculative extension of our analysis would be in describing the large-amplitude limit-
cycle solutions that we have also found in numerical simulations of the symmetrical problem
at large Reynolds number, which appear to have a structure close to that of the large-amplitude
limit-cycle solutions to the asymmetrical problem given above.

While the asymptotic methods we have used are for the most part well-established, novel
features of the current work include the manner in which some of them are applied and the use
in combination of such a range; we expect that a similar synthesis of different techniques will
prove valuable in many other evolutionary problems. With regard to our steady-state analysis,
we would highlight the key role of optimal truncation in making an expansion in inverse
powers of the logarithm of the small parameter sufficiently accurate to be useful in practice.

The RPJ equation can play an instructive role as an exact reduction of the Navier—Stokes
equations in, for example, studying blow-up phenomena and transitions to chaos. We accord-
ingly hope that some of the apparatus we have developed will also prove useful in the study
of the full Navier—Stokes equations or of other similarity reductions thereof. An example of
the latter is the flow between a porous rotating disk and an impermeable, fixed plane [31],
where a Hopf bifurcation is known to give rise to stable oscillatory solutions, although the
time-dependent flow at large Reynolds number remains to be investigated. The natural ex-
tension of the RPJ equation to fully three-dimensional flows is also known to exhibit chaotic
solutions [32]; these too may be amenable to our approach.
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We have given perhaps one of the most detailed asymptotic studies so far undertaken of
fully time-dependent nonlinear behaviour in a large Reynolds number flow problem of this
type and, as indicated above, we hope that the asymptotic analysis described will be of value
in the treatment of a range of related initial-boundary-value problems. Moreover, the current
analysis is more broadly of some interest from the point of view of nonlinear parabolic sys-
tems, it being rare for scalar parabolic equations to possess temporally pesibdiit sets.

We hope that the approaches we have outlined will also prove effective in asymptotic studies
of a variety of other evolutionary problems arising in a range of contexts.
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Appendix A. The zero-pressure inviscid Riabouchinsky—Proudman—Johnson equation

A.1l. GENERAL SOLUTION

This appendix is concerned with the partial differential equation
Fy = FF = F Fyy (A1)

this is known to be integrableci [15] and references therein) but it is useful in the current
context to outline a convenient means by which initial-value problems can be solved for
arbitrary initial data. We note that results equivalent to some of those below have also been
obtained (in a slightly different context) by Galaktionov and Vazquez [33]; a special case of
(39), namely

F =B@®)y+ C@)sink(@)y with p(r) =0

can be used to exemplify the generic blow-up behaviour they describe. The analysis we give
fairly readily generalises to the equation

Fy = FF— FFyy + pt)

for prescribedp(¢) (again see [15]), but in practice the pressure coefficient is typically un-
known and we shall not pursue the caset 0.
From (A1) we have

Foy = F3Fyy = F Fpy, (A2)
and so (A1-A2) can be solved by characteristic methods by satisfying

dy

5 =7 (A3)
df, d¥,
- = FZ, =5 Fn (A4)

along the characteristics ((A3) shows that these represent particle paths);fgiven O,
characteristics on whiclF, does not blow up therefore haw, = 0. For the initial-value
problem

atr =0 F =F,
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we impose on each characteristic that
atr =0 y=y, F=F0)  F=FO,

usingy; to parametrise the initial data, and (A4) then gives

F(yi) F(yi)
(‘-’Y — 17 r"-'” — 7, A5
Y1t F () Y 1—tF ()’ (A3)
moreover, if we writey = y(z; y;), it follows from (A3) that along characteristics
d /o 0
d (_y) _ g
dr \ 9y Ay
so that
dy 1
dy:  1—tF ()
and hence
o 1 F/ (&) )
= ————— dE + y, (1), F = / — dg + v, (@), A6
Y /o 1—F/ @) A—tF/©®p (A0)

wherey, is arbitrary except thap,(0) = 0, y,(0) = —%;(0). Expressions (A5) and (A6)
furnish the general solution to (Al) in terms of the parameteas is readily confirmed by
direct substitution. Imposing the boundary data

y:o .?:?y:o,

for example (this being relevant to the analysis of Section 7.1), #jt0) = #/(0) = 0,
implies thaty,(0) = 0. In that context, however, we have the difficulty of wishing to impose
initial data asy — —oo rather than at = 0, with y — 0" asr — —oo on characteristics;
nevertheless, the initial-boundary-value problem in question can similarly be solved to give
(132).

A.2. SIMILARITY SOLUTIONS

Of particular interest in the preceding analysis are the scaling similarity solutions of (Al),
namely

F ==~ m),  n=y=n% (A7)
these satisfy
Qy — oMy, = Q2 — QQ, (A8)

so that we requir&2, = 0,Q, = 1or
QL= 2)"™ = holan — Q) (A9)

for some constant of integratioky. Writing = an — @ in (A9) yields an autonomous
eguation whose phase plane is readily analysed; moreover,

Qn
/ P 11— P)™dP = ho(m + Mo) (A10)
0
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for some constanty. Imposing the conditions

atn=0 Q=g,=0, (A11)
so thatng = 0, we have

o
a+1

and we thus need > 0, \g > 0. For our purposes the cases

1 1
=1 Q=-= —e o, Al2
o v +n+ o ( )
1 1 1
= — Q=—-n——sin(h s Al13
a=3 N P (hom) (A13)

are those of most significance (for reasons which will subsequently become clear). We first
consider the condition

asmn — +oo Q, — 1, (A14)

relevant to Section 6.4. This constraint is automatically satisfied for (A9), (A12) when,
with

Q, ~1— (ho(a — 1)Yon~Ye-D asn — +oo fora > 1;
the approach to (A14) is therefore most rapid for (A12) and it was shown in Section 6.4 how a
‘logarithmically perturbed’ version of the = 1 similarity solution is selected by appropriate
matching of the exponentially decaying term (in a manner analogous to the way in which a
logarithmically perturbed form of the fastest-decaying travelling wave is selected by Fisher's
eqguation; see [34], for example). Equation (A8) also possesses non-analytic solutions which

satisfy (A11l) and (A14) when & o < 1; these satisfy (A9) fon < n., whereQ(n.) = ane,
Q,(n.) =1, andQ = an. +n — n, for n > ., with

1—a _ —a)/(1— _
Q~ane + (M = o) + 5oL = )YV =Y asy — ;. (AL5)

However, for such a solution to be tenable in the current context, it must be realisable as the
8 — 0% limit of a solution to the viscous equation

Fy = 8Fyy, + FJ — FF,, (A16)
with r — 0~ (where we here uskto denote the size of the (small) viscous term). Introducing

y=st)+8Y%,  F=50)+ 81/2(2_[) 4 3@ p (A17)

to describe the viscous interior layer, whefe) ~ n.(—t)~¢, yields to leading order i& that
Z Z
Fo,, = K ——Fy, — ——Fpy;. Al8
Ozt 0zzz T (—l‘) 0z (—t) 0zz ( )
It is easily seen that the only solutions to (A18) of the form

Fo= (=10, t¢=z/(-n"? (A19)
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which do not blow up exponentially in at least one of the lingits- o0 are polynomials of
the form

[v/2]

Q@) =kv ) vtV g=3WN-2, (A20)
n=0

whereN is a non-negative integeky is arbitrary,yo = 1 and the othey, can be determined
from (A18). It is also readily confirmed that (A19—A20) provide the only relevant solutions
to (A18) in the limitz — 0~; since it is not possible to match any of these both with (A15)
asz — —oo and withQ2 = an. +n — n. asz — +oo, the casex < 1 can thus be ruled
out, further clarifying the reasons why (A12) is the solution that arises when describing the
relevant intermediate asymptotic behaviour.

In Section 7.1 a condition corresponding to

asn — +oo Q- Qo (A21)

applies (in addition to (A11)), where the const&h{, needs to be determined as part of the
solution. As already indicated, this condition cannot be satisfied forl when (A11) holds;

for particulara < 1, however, we can construct a suitable solution in two parts, comprising
a solution to (A8) with2, # 0,1 forn < 2n,, with Q(2n,) = 2an., 2,(2n.) = 0, and

Q = 2an, for n > 21, (the quantityn. is given by (A22) below, withf2,, = 2an.). However,
before discussing the acceptability of such a non-analyticity at2y., we need to consider
the behaviour close tp = 7, since2,(n.) = 1, implying that the analysis of (A18) described
above becomes relevant; using (A10) we have

1
oNe = / P* 11— P)dP. (A22)
0
The inner solutions (A20) are now viable, requiring to match with (A1%) as —oo that
N -2 1 N ~(V-2)
o= —-", ky = — 0 . (A23)
N-1 N\N-2

However, to continue the solution intp> 7. it is necessary thaV be an odd integer; then
forn. < n < 2n. we can replacé in (A9) by —xg and take

QM) =2un, — 20, —n) (A24)

(such a change of signs in (A9) is already implicit in (A13)). We deduce, therefore, that a
similarity solution of the form (A7) satisfying (A10) and (A21) is realisable only wher

given by (A23), whereinV > 1 is an odd integer. Moreover, the preceding analysis of (A18)
indicates that the generic caseNs= 3, a = 1, explaining its occurrence in the analysis of
Section 7.1. Fou = 1, we have from (A13) thatj, = 7t/\o.

Finally, we need to explain the reasons for the acceptability of the non-analyticity in the
solution atn = 2n,. (We note that more than one oscillation in, say, (A13) could in principle
occur before the solution switches ¥ = Q.,, but the case). = n/\q is expected to be
generic, rather than, = M/ for some intege? > 1.) Asn — 2n_ we have from (A9)
that

o

" 1<axo>1/“<2nc — m)(etbie (A25)

Q ~ 2un. +
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The inner scalings for (A16) thus now read

y =s(t) +3Y?, F =5@)+3tV/2p (A26)
with, in this cases(¢) ~ 2n.(—¢t)~%, leading in place of (A18) to

Fo;r = Fozz, (A27)
from which it follows that

Fo(z, 1) ~ ®o(2) ast — 07,

where viscous effects play no role afg(z) is arbitrary (being determined by the evolution
over earlier times) except that it satisfies

o

Do ~
0 a+1

(aho) e (—z) /e asz — —oo,

dy— 0 asz — +o0.

Hence the interior layer (A26—A27) places no constraints on the valugiof only active role
played by viscous effects in the discussion of this appendix being confined to the interior layer
described by (A17-A18), which plays a crucial role in selecting the valae % Although
viscosity plays no explicit role in Section 7.1.2, the inner analysis ahost n. described
above implies the requirement on the inviscid solution that it be analytic wkiegemaximal;

such a constraint is implicit in the derivation of (132). We note that x¥,, = 0 at both

n = 1. andn = 2y, and, in view of (A4), both are therefore characteristics of (Al).

Appendix B. Symmetries of the viscous Riabouchinsky—Proudman—Johnson equation

This appendix is concerned with the symmetries of (1) and briefly indicates some of their
implications. This partial differential equation is invariant under translations of paitdr,

Yi=y+y, t'=t+1, F*=F, (B1)
and has a scaling invariant
v = oy, t*:czt, F*=F/o (B2)

(with the inviscid case = 0 having another) which implies the existence of the similarity
reductions

F(y,t) = &EDY2QMm),  n=y/(EFnY? (B3)

which fail, however, to feature in our asymptotic analysis (though only just — see (101)). More
interesting is the infinite-dimensional Galilean symmetry

Y=y —s(), =1, Fry* 1) =F(y, 1) —5() (B4)

wheres(¢) is arbitrary. This symmetry has an implicit role in the analysis of a number of the
interior layers appearing above and it implies the obvious resulthata(¢)+b(t)y satisfies
(1) for anya(t) andb(t). Moreover, it leads, together with (B1), to the similarity reduction

Fy,t) =50)+Q2Mm), n=y-—s(@), (BS)
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which has steady states and travelling waves as special cases (with the particular implication
that steady-state results carry over directly to the more general class of solutions (B5)), and,
together with (B2), to

Fy, =5+ @ED"?QMm), m=(—s@)/ (&Y (B6)

Another noteworthy feature of (1) is its quadratically nonlinear form, which we have
already exploited to obtain low-dimensional reductions, giving solutions which cannot be
obtained by classical similarity methods. The relevant invariant subspaces are preserved under
(B1), (B2) and (B3), so (prior to the imposition of boundary conditions) the resulting ordinary
differential equations inherit each of these symmetries; it is worth noting that the invariant
subspaces include useful special cases of (68) of the form

F =a)+ b))y + c(t)e *Dy, F =a@t) +c()e™.
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