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Abstract. The Berman problem for two-dimensional flow of a viscous fluid through an infinite channel is studied.
Fluid motion is driven by uniform suction (or injection) of fluid through the upper channel wall, and is charac-
terised by a Reynolds numberR; the lower wall is impermeable. A similarity solution in which the streamfunction
takes the formψ = −xF (y, t) is examined, wherex andy are coordinates parallel to and normal to the channel
walls, respectively. The functionF satisfies the Riabouchinsky–Proudman–Johnson equation, a partial differential
equation iny and t ; steady flows satisfy an ordinary differential equation iny. The steady states are computed
numerically and the asymptotics of these solutions described in the limits of small wall suction or injection, large
wall injection and large wall suction, the last of these being given more concisely and more accurately than in
previous treatments. In the time-dependent problem, the solution appears to be attracted to a limit cycle when
R � 1 (large wall suction). This solution has been computed numerically forε = 1/R down to 0·011, but the
structure of the solution makes further numerical progress currently infeasible. The limit cycle consists of several
phases, some with slow and others with very rapid evolution. During one of the rapid phases, the solution achieves
a large amplitude, and this feature of the solution lies behind the practical difficulties encountered in numerical
simulations. The profile of the solution is plotted during the various phases and corresponding asymptotic descrip-
tions are given. An exact solution to the Riabouchinsky–Proudman–Johnson equation covers most of the phases,
although separate discussion is required of the boundary layers near the two walls and an interior layer near a zero
of F . Particular consideration is required when this zero approaches the upper channel wall.
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1. Introduction

We consider a similarity solution of the Navier–Stokes equations for plane flow of a viscous
fluid confined between parallel walls. The flow is driven by uniform withdrawal (or injection)
of the fluid through the upper channel wall, the lower wall being impermeable. The problem is
characterised by a Reynolds numberR, based on the speed at which fluid is withdrawn from
the channel, and our particular interest is in the asymptotic structure of the flow when this
Reynolds number is large.

The governing Navier–Stokes equations and boundary conditions permit a flow whose
streamfunctionψ takes the form−xF (y, t), wherex is the coordinate parallel to the channel
walls,y is the normal coordinate andt is time. The governing partial differential equation for
the similarity functionF is due to Riabouchinsky [1] – see also Proudman and Johnson [2];
as a special case, steady flows (those for whichF = f (y)) satisfy an ordinary differential
equation [3] studied by Berman [4] in the context of channel flow. We shall refer to the
problem of determiningF (y, t) for various Reynolds numbers as the Berman problem.
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The large Reynolds number asymptotic behaviour of the steady solutions has proved re-
markably subtle, and was one of the first applications of exponential asymptotics in fluid
mechanics (by Terrill [5]; see also [6] and [7]). It is this large Reynolds number behaviour, of
both steady and unsteady solutions, that we primarily treat below.

The Berman problem was originally investigated in the case where both channel walls are
equally permeable (see, for example, [4, 8, 9]). The extension to a more general case, where
the fluid is withdrawn from the two channel walls at different rates, has also been carried out
[10–15].

The limiting case of ‘complete’ asymmetry, with one permeable and one impermeable
wall, has previously been investigated [7, 15, 16], and it is this problem that is addressed in
this paper. In this case, there is a unique steady solution for all values ofR, except in the range
7·05 ≈ R1 < R < R2 ≈ 7·31, where there are three solutions [15, 16]. After formulating
the problem in Section 2, in Section 3 we compute the steady solutions numerically and offer
asymptotic solutions in the three limits of large wall injection, large wall suction, and small
wall suction or injection. Numerical solution of the ordinary differential two-point boundary-
value problem is simplified by means of a rescaling due to Terrill [8] which converts it into an
initial-value problem. This rescaling allows calculation of numerical solutions at much larger
Reynolds numbers than would otherwise be possible by direct calculation, for example by
shooting from the channel walls and matching.

It is possible to compute the stability of the steady flows to disturbances which are also
of the similarity formψ = −xF (y, t). It is then found [15] that the steady state becomes
unstable in a Hopf bifurcation atR = R3, whereR3 ≈ 12·755. Numerical evidence sug-
gests that this bifurcation is supercritical, and that a limit cycle exists forR > R3. This
limit cycle seems to be stable (within the context of the Riabouchinsky–Proudman–Johnson
equation, henceforth the RPJ equation) for all values of the Reynolds number at which we
have carried out numerical simulations of the initial-value problem (see Section 4). As the
Reynolds number is increased, the limit cycle separates into slow and fast phases of evolution.
During one of the fast phases, the solution gains large amplitude, and this combination of rapid
evolution and large amplitude makes reliable numerical simulation difficult. Indeed with our
(admittedly rather unsophisticated) numerical scheme we have been unable to compute the
limit cycle reliably beyondR ≈ 100 without the run times becoming prohibitively long. The
asymptotic structure of the limit cycle, described in Sections 5, 6 and 7, makes clear why
such numerical difficulties are encountered. We note that there have heretofore been very few
asymptotic treatments of time-dependent solutions to the RPJ equation, a notable exception
being the blow-up study of Grundy and McLaughlin [17].

We discuss our results in Section 8, and make our concluding remarks in Section 9. Appen-
dix A outlines the general solution to the inviscid RPJ equation in the case of zero pressure
and also analyses its similarity solutions, these playing a crucial role in Sections 6 and 7.
Appendix B discusses symmetry (and related) properties of the full (viscous) RPJ equation.
We note that the notation of Section 3 sometimes departs from that of the remainder of the
paper.

2. The Berman problem

We consider two-dimensional flow of a Newtonian fluid with kinematic viscosityν in a chan-
nel of half-widthh. The flow is driven by uniform withdrawal of the fluid through the upper
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channel wall with speedV ; the lower channel wall is impermeable. After adopting the scales
h andh/V for length and time, respectively, we note that a particular class of solutions to
the governing (dimensionless) Navier–Stokes equations may be written in terms of a stream-
function ψ(x, y, t) via ψ = −xF (y, t), wherex andy are coordinates parallel and normal
to the channel walls, respectively. The velocity field is then given byu = ∂ψ/∂y = −xFy ,
v = −∂ψ/∂x = F . After elimination of the pressure from the Navier–Stokes equations, we
find, for the similarity flow of interest, that the functionF satisfies the RPJ equation [9]

Fyyt = εFyyyy + FyFyy − F Fyyy, (1)

whereR = hV/ν is the Reynolds number andε = R−1, subject to the boundary conditions

F (−1, t) = Fy(−1, t) = Fy(1, t) = 0, F (1, t) = 1, (2)

corresponding to normal suction (forε > 0) or injection (forε < 0) through the upper wall at
y = 1, and an impermeable no-slip lower wall aty = −1. For numerical simulation of (1) it
is useful to note that this equation may be integrated once iny to give [1, 2]

Fyt = εFyyy + F 2
y − F Fyy + p(t), (3)

wherep(t) is a function of integration, with the fluid pressure beingp̂(y, t)+x2p(t)/2, where
p̂ is given by

Ft = εFyy − F Fy − p̂y; (4)

p(t) is to be determined by imposing the four boundary conditions onF . The vorticity is
given by

ω = vx − uy = xFyy, (5)

the quantityFyy playing an important role in what follows.

3. Steady flows

3.1. NUMERICAL RESULTS

Steady flows, for whichF (y, t) = f (y), satisfy

εf ′′′′ + f ′f ′′ − ff ′′′ = 0, (6)

subject to the boundary conditions

f (−1) = f ′(−1) = f ′(1) = 0, f (1) = 1. (7)

For values ofε that are not too small, the system (6–7) may readily be solved numerically. The
resulting bifurcation diagram is given in Figure 1, showing−f ′′(1), which is proportional
to the shear stress at the upper channel wall, as a function of the Reynolds numberR. A
corresponding solutionf (y) for smallε (i.e. largeR) is shown in Figure 2.

For the purposes of calculating numerical solutions to (6–7), it is useful to apply the fol-
lowing technique, due to Terrill [8], for converting the boundary-value problem (6–7) into
an initial-value problem. (The technique also allows one to develop an alternative asymptotic
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Figure 1. Solid line is a plot of−f ′′(1) against Reynolds numberR = ε−1 for numerical solutions to (6–7). Note
that the solution is unique, except for a range of Reynolds numbers aroundR = 7. Where there are multiple
solutions, the upper and lower branches represent temporally stable solutions to (1–2); the middle branch is
unstable. Elsewhere, where the solution is unique, it is stable forR < R3 ≈ 12·755, but becomes unstable in
a Hopf bifurcation atR = R3. The dashed line (a) shows the small-R asymptotic approximation in (11) (the plot
includes terms up toR4). When this series is reverted to giveR in powers of(f ′′(1) + 3

2), the dashed line (b) is

obtained (the plot includes terms up to(f ′′(1)+ 3
2)

9). Crosses show the large-R asymptotic approximation from
Section 3.4, optimally truncated. ForR less than around 14 it is not possible to apply this large-R approximation
consistently since Equations (28) and (30) have no real solutions; it is noteworthy that this occurs fairly close to
the fold.

description off to the one given below [6, 7].) Firstf andy are rescaled by introducingφ
andη through

f (y) = 1
2εbφ(η), η = 1

2b(y + 1), (8)

where the constantb is arbitrary at this stage. The parameterε is then absent from the equation
for φ(η), which is

φηηηη + φηφηη − φφηηη = 0. (9)

This equation is integrated numerically, subject to the initial conditions

φ(0) = 0, φ′(0) = 0, φ′′(0) = A, φ′′′(0) = B, (10)

whereA andB are arbitrary, until a zero ofφ′(η), atη = η̄, say, is obtained from the numerical
calculation. By takingb = η̄ we obtain from (8) a solution to the boundary-value problem (6–
7); the corresponding value ofε is 2/(bφ(b)). By a suitable rescaling ofφ andη, we may set
B = 1. Solutions may then be calculated in the limit asε → 0+ by lettingA → A+c [18],
whereAc ≈ −1·232 [19].

This reformulation of the problem allows us to computef (y) for much larger Reynolds
numbers than is possible by solving the full boundary-value problem (6–7) directly, for ex-
ample by shooting. Since they arise as a result of the calculation, the Reynolds numbers for
which we are able to compute solutions are not necessarily round numbers (this explains the
‘odd’ values quoted in this paper). To illustrate the practical utility of the reformulation we
note that we have been able to computef (y) from (6–7) at Reynolds numbers up to around
42 by shooting from each wall and matching at an interior point, whereas we have computed
f up to Reynolds numbers in the region of 104 using (9–10). We have checked a sample
of our solutions obtained by Terrill’s rescaling against direct solutions to the boundary-value
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Figure 2. The solution to (6–7) forR = 12256·893 (solid line), together with the leading-order outer asymp-
totic approximation from Section 3.4 thatf ∼ −122·909 cos1

2πy (dashed line). The two lines are almost
indistinguishable.

problem (6–7), where these are feasible, and have found excellent agreement. All numerical
calculations were performed using integration routines from the NAG library in a double
precisionFORTRAN program.

In the subsections that follow we describe the asymptotic behaviour of the steady solution
in the limits of smallR, large wall injection (−R � 1), and large wall suction (R � 1).

3.2. STEADY FLOWS IN THE LIMIT R→ 0

For small Reynolds numbers, the solution to (6) may be written as a power series

f (y) =
∞∑
n=0

Rnfn(y). (11)

The first couple of terms in this series are readily found to bef0(y) = 1
4(1 + y)2(2 − y)

andf1(y) = − 1
1120(1− y2)2(y3 + 2y + 35). From these expressions, a small-Rexpansion

of f ′′(1), plotted in Figure 1, is found to bef ′′(1) = −3
2 − 19

70R + O(R2). This series may
readily be reverted to giveR in powers of(f ′′(1) + 3

2); the result is plotted in Figure 1. The
pressure term

p = −εf ′′′ − f ′2+ ff ′′, (12)

has the corresponding expansion

Rp =
∞∑
n=0

Rnpn, (13)

where the first few terms arep0 = 3/2,p1 = −81/140 andp2 = 2929/107800.
The radius of convergence of the small-R series forpmay be estimated using the extension

by Mercer and Roberts [20] of the method due to Domb and Sykes [21]. We first compute a
large number of terms in (13); we have computed up ton = 36 using the computer algebra
package Maple. We then compute the quantities

Bn = pn+1pn−1− p2
n

pnpn−2 − p2
n−1

and cosθn = 1

2

[
pn−1Bn

pn
+ pn+1

pnBn

]
. (14)
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If the series in (13) has finite radius of convergencer, with convergence-limiting singularities
of orderq at r exp(±iθ), then for largen,

Bn = 1

r
− 1+ q

rn
+O(n−2) and cosθn = cosθ+O(n−2). (15)

We estimate using the coefficientspn available to us thatr ≈ 5·5, q ≈ 0·37 andθ ≈ 1·46,
so the convergence-limiting singularities appear to lie close to the imaginary axis. Curves (a)
and (b) in Figure 1 indicate the range of validity that can be obtained from the series.

3.3. STEADY FLOWS IN THE LIMIT R→−∞
In the limit R → −∞, the solution to (6–7), away from a boundary layer aty = 1, takes the
form [16]

f (y) ∼ cosπ
4 (1− y)− 1

2(−R)−1/2z0(π/4)
1/2(1− y) sin π

4 (1− y)+O((−R)−1), (16)

where the constantz0 is to be determined by matching with the boundary-layer solution.
Neary = −1, f takes the form

f (y) ∼ (−R)−1/2 {θ0(Y)+O((−R)−1/2)
}
, (17)

whereY = (−R)1/2(y + 1) andθ0 satisfies

θ′′′′0 + θ0θ
′′′
0 − θ′0θ

′′
0 = 0 (18)

subject toθ0(0) = θ′0(0) = 0 and the matching conditionθ0 ∼ πY/4 asY → ∞. Thus
if we write θ0(Y) = (π/4)1/2ρ(z), with z = (π/4)1/2Y, it follows that ρ(z) satisfies the
Falkner–Skan equation ([22], p. 316)

ρ′′′ + ρρ′′ − ρ′2 = −1 (19)

(this is the casem = 1 in the usual notation), subject toρ(0) = ρ′(0) = 0 andρ′(z) ∼ 1 as
z → ∞. Numerical evaluation ofρ(z), by shooting, reveals that asz → ∞, p(z) ∼ z − z0,
wherez0 ≈ 0·647900 [7], and this provides the constant required in (16).

3.4. STEADY FLOWS IN THE LIMIT R→∞
3.4.1. Interior- and boundary-layer analysis
We consider the behaviour close toy = 1 of solutions to (6) which satisfy

aty = 1 f = 1, f ′ = 0. (20)

We start by writing

y = 1+ εY, Y < 0,

and defineδ(ε)� 1 by taking the location of the zero off closest toy = 1 to beY = −1/δ.
Moreover, we defineα(ε) = O(1) andν(ε)� 1 such that

atY = −1/δ f = 0, fY = δα, fYYY = −δ2α2ν, (21)

asymptotic expressions for each of the unknownsδ, α andν being obtained below.
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3.4.2. Interior layer
In view of (21), we scale according to

Y = −1

δ
+ Ŷ

(αδ)1/2
, f = (αδ)1/2f̂

to give

f̂Ŷ Ŷ Ŷ Ŷ + f̂Ŷ f̂Ŷ Ŷ − f̂ f̂Ŷ Ŷ Ŷ = 0,

(22)

at Ŷ = 0 f̂ = 0, f̂Ŷ = 1, f̂Ŷ Ŷ Ŷ = −ν;
the final condition here motivates the inclusion of the factorα2 in the definition ofν in (21).
The only parameter appearing in (22) isν, which will prove to be exponentially small inδ (see
(31) below). The first three terms in the requiredν → 0 limit of (22), in which exponential
growth is suppressed aŝY → −∞ (this is needed to match into the outer region), are given
by

f̂ ∼ Ŷ − 1
6νŶ

3+ ν2F̂ , (23)

where, writingĜ = F̂Ŷ Ŷ Ŷ Ŷ , we have

Ĝ ∼ Ŷ −
√

π

2
eŶ

2/2
(
1+ erf (Ŷ /

√
2)
)
; (24)

since

Ĝ− Ŷ F̂Ŷ Ŷ Ŷ + F̂Ŷ Ŷ = −1
3Ŷ

3,

F̂ is completely specified by integrating (24) four times using

at Ŷ = 0 F̂ = 0, F̂Ŷ = 0, F̂Ŷ Ŷ =
√

π

2
, F̂Ŷ Ŷ Ŷ = 0.

3.4.3. Boundary layerY = O(1)
Writing, asδ→ 0,

f = 1+ δF, α ∼
N∑
n=0

δnαn, F ∼
N−1∑
n=0

δnFn, (25)

we have

FnYYYY − FnYYY =
n−1∑
m=0

(
FmF(n−1−m)YYY − FmYF(n−1−m)YY

)
,

atY = 0 Fn = FnY = 0, (26)

asY →−∞ Fn ∼ αn+1 + αnY,

whereα0 = 1; here we have matched with the first term in (23), which is valid to all powers
of δ. The boundary-value problem (26) determines bothFn andαn+1 and is readily iterated
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forward inn to give closed form solutions to any desired order. The first few terms areα1 = 1,
α2 = 4, α3 = 129/4, andF0(Y ) = 1+ Y − expY , F1(Y ) = 4+ Y − (1

2Y
2− 3Y + 4)expY .

We note that we have been able to scale in order to formulate the above problems such
that the only parameter appearing in (22) isν and the only one in (25–26) isδ. This makes
our approach both more concise and more generally applicable than previous attempts and
facilitates the construction of the solution to any order inδ. At this stage of the analysis, the
fact thatν(ε) andδ(ε) remain to be determined is not a difficulty; in solving (22) we need only
to know thatν� 1 and (25–26) is implied byδ� 1 on the assumption (justified below) that
ν is exponentially small inδ. Subsequent matching will determineδ andν as functions ofε;
the first stage of matching, which we now describe, relatesδ to ν.

3.4.4. Matching between interior and boundary layers
Here we must match terms from the boundary layer which are exponentially small asY →
−∞. The important quantity in the matching is the term−βneY inGn = FnYYYY , the constant
βn also being determined by solving (26); the first few terms areβ0 = 1, β1 = −2, β2 = −9

2
andG0(Y ) = −expY ,G1(Y ) = (−1

2Y
2− Y + 2)expY . Since (24) implies

Ĝ ∼ −√2π eŶ
2/2 asŶ →+∞,

writing

β ∼
N∑
n=0

δnβn (27)

and matching requires, to any orderN , that

δβ(δ) ∼ ν2(α(δ)δ)5/2
√

2π eα(δ)/2δ; (28)

hence, as promised,ν is exponentially small inδ.

3.4.5. The outer solution
The leading-order outer solution is simply, since theε term in (6) is negligible,

f ∼ −2δα

επ
cos(1

2πy), (29)

where we have required that to leading order (sinceδ/ε � 1) f = 0 aty = ±1 andf ′ = δα

aty = 1 (to match with (23)). Matching with the second term in (23) then requires

ν ∼ π2ε2

4αδ
, (30)

and (28) and (30) are the two equations determiningδ(ε) andν(ε), the functionsα(δ) andβ(δ)

being known from the analysis above. To leading order we have

δ ∼ 1
8 log(1/ε), ν ∼ 2π2ε2 log(1/ε) asε→ 0 (31)

and, since the expansions proceed in powers ofδ and are divergent, the use of optimal trunca-
tion methods when determiningα andβ (with the full balances in (28) and (30) being solved
for ν and δ) typically provides the most effective way to obtain an accurate solution. The
results of such a calculation are summarised in Figure 1 and Table 1.
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Table 1. Comparison between the ‘exact’ (numerical) value ofM ≡ max |f (y)|,
and the leading-order asymptotic approximation thatMa = 2αδ/πε. Terms up to
αN+1δN+1 andβN δN are included in the sums used to computeα andβ, where
N is either 19 (the largest value ofN for which we have computedαN+1 and
βN ), or some smaller value ofN , indicated in the table, which corresponds to
truncating the series forβ after its smallest term. For the examples given, this
truncation coincides with the optimal truncation forα.

N R δ α Ma M Error

5 20·0 0·07331 1·1290 1·0538 1·2148 13%

5 30·0 0·05858 1·0867 1·2157 1·3404 9·3%

14 203·4503 0·03101 1·0365 4·1612 3·9662 4·9%

19 711·8385 0·02375 1·0266 11·0502 10·7866 2·4%

19 2462·234 0·01928 1·0211 30·853 30·565 0·95%

19 3572·189 0·01825 1·0198 42·314 42·018 0·71%

19 8457·171 0·01623 1·01746 88·915 88·579 0·38%

19 12256·89 0·01549 1·01660 122·909 122·495 0·34%

3.4.6. Boundary layer aty = −1
Because (29) does not satisfyf ′ = 0 aty = −1, a boundary layer is also needed at the left-
hand (lower) boundary, but this is passive as far as the matching is concerned, the behaviour
neary = 1 being what is crucial in governing the leading-order solution. The inner scalings
are

y = −1+ εȲ /(αδ)1/2, f = (αδ)1/2F̄ ,

leading, on matching with (29), to the Falkner–Skan problem

F̄ ′′′0 + F̄ ′20 − F̄0F̄
′′
0 = 1,

at Ȳ = 0 F̄0 = F̄ ′0 = 0,

asȲ →+∞ F̄0 ∼ −Ȳ ,

so thatF̄0 = −ρ(Ȳ ) with ρ given by (19).

3.5. SUMMARY

As evidenced by Figure 1 and by the preceding discussion, asymptotic methods provide very
effective means for constructing accurate analytic approximations over most of the range of
Reynolds numbers. Our asymptotic analysis here has been fairly complete – we have ap-
plied regular perturbation methods for smallR, together with appropriate manipulations of
the resulting series (we note that treatment of the series by Padé approximants (cf. Drazin
and Tourigny [23]) does not seem to help much in improving its convergence), together with
singular perturbation methods in the limitsR→ −∞ andR → +∞. Our results in the limit
R → +∞ are worth highlighting, being significantly more accurate than those which have
been obtained before, the optimal truncation approach enabling us to obtain algebraic accuracy
in ε despite many of the expansions proceeding in powers of 1/ log(1/ε). Such approaches to
problems involving logarithmic expansions should prove much more generally applicable and
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related developments will be reported in more detail elsewhere, our main focus here being on
the time-dependent problem discussed in the remaining sections.

4. Time-dependent flows: numerical results

4.1. NUMERICAL SCHEME FOR SOLVING THE INITIAL-VALUE PROBLEM

Our numerical scheme for computing time-dependent flows is broadly based on one of Glenn
Ierley (personal communication). Equation (1) (or in practice (3)), together with boundary
conditions (2), is solved using the Chebyshev tau method [24]. We represent functions of
y as sums of Chebyshev polynomials, truncated at some finite order. We find it convenient
then to consider any function as being equivalent to the vector of coefficients in this finite
sum. We represent numerically the solutionF (y, tn) at thenth time step as the vectorf n =
(f n0 , . . . , f

n
K)

T , where the superscriptT denotes the transpose, with

F (y, tn) =
∞∑
k=0

f nk Tk(y), (32)

Tk(y) being thek-th Chebyshev polynomial. Derivatives ofF are calculated in spectral space,
while products are calculated in physical space.

We discretise (3) in time as

F n+1
y − F n−1

y = ε1t(F
n+1
yyy + F n−1

yyy )+ 21t(F
2
y − F Fyy + p(t))n, (33)

where1t is the time step and the superscriptn − 1, n or n + 1 indicates evaluation at the
corresponding time step. This expression is then readily rearranged to give an approximate
equation for the Chebyshev coefficientsf n+1 of the form

(D − ε1tD
3)f n+1 = [(D + ε1tD

3)f n−1 + 21tg
n
]+ (c,0,0, . . . ,0)T , (34)

wherec = 21tp(tn) andgn = (gn0, . . . , g
n
K)

T is the vector of Chebyshev coefficients such
that at then-th time step

F 2
y − F Fyy =

∞∑
k=0

gnk Tk(y). (35)

The matrixD is the differentiation matrix, such that if the vectora represents the function
a(y) thenDa represents da/dy. In the tau method, the final three rows of the vector equation
(34) are changed in order to forceF n+1 to satisfy appropriate boundary conditions. Since
we integrate an equation that is third-order iny, it is appropriate to apply three boundary
conditions to (34); we choose to impose the homogeneous conditions from (2). To do this, the
last three rows of the matrixD − ε1tD

3 are replaced by 1 −1 1 −1 · · · (−1)K−1 (−1)K

0 −1 4 −9 · · · (−1)K−1(K − 1)2 (−1)KK2

0 1 4 9 · · · (K − 1)2 K2

 (36)

to give a modified matrixD , and on the right-hand side of (34) the corresponding rows are
replaced by zeros. The matrixD is then invertible, and so

f n+1 = D−1
[
(D + ε1tD

3)f n−1 + 21tg
n
]†+D−1(c,0, . . . ,0)T , (37)
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Figure 3. Limit-cycle solutions to (1–2) forε = 0·04, 0·035, 0·03, 0·025, 0·02, 0·018, 0·017, 0·016, 0·014 and
0·012 (the cycles grow in size asε decreases). Plotted are the quantitiesFyy(−1, t) andFyy(1, t), which are
proportional to the wall stresses. Evolution around the limit cycle is clockwise. Note that the extreme values of
Fyy(±1, t) achieved around the cycle increase rapidly asε is reduced.

where it is understood that the quantity[· · ·]† in (37) is equal to the corresponding term in (34),
modified by replacing the last three rows with zeros. At this point the quantityc is unknown,
and must be determined by applying the remaining boundary condition,F (1, tn) = 1. Since
Tk(1) = 1 for all k, we have

c =
1−

K∑
k=0

αk

K∑
k=0

βk

, (38)

where

α = D−1 [(D + ε1tD
3)f n−1 + 21tg

n
]†

andβ = D−1(1,0,0, · · · ,0)T . This completes the evaluation off n+1.
Our implementation of the numerical scheme is rather unsophisticated: for example, we

use a constant time step1t in each calculation, although, as we shall see, the nature of the
time-dependent solutions suggests that an adaptive time-stepping algorithm would lead to a
more efficient numerical solution. For each choice ofε, the time step1t is chosen so that
calculations using a smaller value of1t give essentially the same results, and the numerical
solution is considered to be converged.

4.2. NUMERICAL RESULTS FOR THE LIMIT CYCLE

For R < R3, the system (1–2) has at least one stable steady solution, and the numerical
simulation of the initial-value problem appears to converge to a steady state at large time.
The bifurcation of the steady state atR = R3 is a Hopf bifurcation, at which two complex
conjugate eigenvalues cross the imaginary axis. We find that the time-dependent numerical
solution is attracted to the steady state forR < R3 but approaches a small limit cycle forR
just beyondR3, and so we infer that the Hopf bifurcation is supercritical.

Figure 3 shows the limit cycle (by which we mean a spatially non-uniform solution that is
periodic in time) for a variety of values ofε. It is notable that the greatest wall stresses around
the limit cycle grow rapidly with decreasingε. This feature of the solution makes reliable
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Figure 4. Limit-cycle solution to (1–2) forε = 0·02. Plotted are the quantitiesFyy(−1, t) andFyy(1, t), which
are proportional to the wall stresses.

Figure 5. Time evolution of maxy F (y, t), miny F (y, t), yz(t) and log−p(t) for the limit-cycle solution to (1–2)
for ε = 0·02. Note the separation of the cycle into slow and fast phases.

computation of the solution difficult in the limitε→ 0. Another difficulty in computing these
limit cycles for smallε is that evolution ofF is extremely rapid around a small part of the
limit cycle. Our method of non-adaptive time-stepping therefore becomes very inefficient in
this limit.

In Figure 4 we show the limit cycle forε = 0·02. More detail of this solution is shown
in Figure 5, where we plot the maximum and minimum values ofF (y, t) across the channel
as functions of time. Also shown are the evolution of the pressure coefficientp(t) and the
interior zeroyz(t) of F , which satisfiesF (yz(t), t) = 0 with −1 < yz(t) < 1. Already for
this quite moderate value ofε, the separation of the evolution ofF (y, t) into slow and fast
phases can clearly be discerned in Figure 5.

For smallε, it is a feature of the solution that the interior zero ofF comes very close
to the upper wally = 1 near the start of the fast phase of the limit cycle. The zero is then
swept rapidly back almost to the midline of the channel,y = 0. To characterise this feature,
for a given limit cycle we let the minimum value ofyz(t) bey∗; Figure 6 shows howy∗ and
min(1− yz(t)) vary with ε.

4.3. PROFILES OFF (y, t)

We now turn to the profile ofF (y, t) during various phases of the limit cycle. To illustrate the
different profiles, we show in Figure 7 the limit cycle forε = 0·011, which is the smallest value
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Figure 6. Lower line: plot of y∗ againstε, where y∗ is the minimum value ofyz(t) over one cycle, and
F (yz(t), t) = 0. Upper line: minimum value of 1− yz(t) over one cycle, plotted againstε.

Figure 7. The limit cycle forε = 0·011. The evolution of the solution from point 4 to point 6 is very rapid: for
example, the time interval from point 1 to point 2 is 9 time units, while that from point 4 to point 6 is 0·15 time
units. Evolution around the limit cycle is clockwise.

of ε for which we have reliable numerical results, and in subsequent figures the corresponding
fixed-t profiles ofF .

Figure 8 shows the form ofF (y, t) at time intervals of 0·5 between points 1 and 2 in
Figure 7. Here, the solution is approximately sinusoidal away from the walls and decays

Figure 8. Profiles ofF on the limit cycle forε = 0·011. The profiles are shown at equal time intervals between
points 1 and 2 in Figure 7. The arrow shows increasingt . The time interval between successive profiles is 0·5.
Evolution ofF during this phase of the limit cycle is relatively slow.



100 J. R. King and S. M. Cox

Figure 9. Profiles ofF on the limit cycle forε = 0·011. Also plotted is they axis, for ease of identifying the
interior zero ofF , yz(t). The profiles are shown at equal time intervals between points 3 and 5 in Figure 7. The
arrow shows increasingt . The time interval between successive profiles is 0·01. Note the rapid evolution ofF as
yz approaches its minimum distance from the upper wall.

Figure 10. Profiles ofF on the limit cycle forε = 0·011. The profiles are shown at equal time intervals between
points 4 and 6 in Figure 7. The arrow shows increasingt . The time interval between successive profiles is 0·01.
Note the rapid evolution ofF during this phase.

slowly. The approach of the interior zeroyz to the upper wall is illustrated in Figure 9, which
shows the evolution ofF at time intervals of 0·01 between points 3 and 5. A fast phase, during
whichyz decreases almost to zero, is shown in Figure 10, where the profile ofF is plotted at
time intervals of 0·01 between points 4 and 6.

Such numerical results are very helpful in clarifying the spatio-temporal evolution of
F (y, t) and now we turn to a small-εasymptotic description of the limit cycle, restricting
the analysis to solutions that are periodic in time.

5. Time-dependent flows: asymptotics of the slow phases

5.1. AN EXACT SOLUTION

5.1.1. Formulation
We start this section by noting a class of exact solutions to (1); we shall subsequently explain
the asymptotic relevance of the results to the boundary-value problem (1–2) in the limitε→ 0.
The class of solutions we consider takes the form

F = A(t)+ B(t)y + C(t) sin(λ(t)y)+D(t) cos(λ(t)y), (39)
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Figure 11. Comparison between asymptotics and numerics forε = 0·011. The solid lines represent numerical
simulations of (1–2), while the dashed lines give asymptotic results. The left- and right-hand sides of the plot
correspond, respectively, to points just after and just before point 6 on Figure 7; we thus show almost a complete
cycle. The upper curves showyz(t). The dashed line is the corresponding quantity calculated asymptotically by
solvingF (yz(t), t) = 0, withF (y, t) given in (39) or (68); the quantitiesA andB are given in terms ofC,D and
λ in (44), these last three quantities evolving according to (45). The lower curves show− log(−p(t))/5, where
the dashed line showsp as given in (41).

this functional form having originally been identified through its repeated occurrence when
pursuing an asymptotic analysis of (1); once identified, it enables us to give a much more
concise presentation of that analysis than would otherwise be the case. Equation (1) is of
a quadratically nonlinear form, numerous other such systems amenable to low-dimensional
reductions akin to (39) having been previously identified (see, for example, [25] and [26]).
Unlike most earlier examples, however, (39) yields an underdetermined system when substi-
tuted in (1), enabling two boundary conditions to be imposed (see below; most applications
of previous examples were restricted to initial-value problems). Another noteworthy feature
of the current example is the appearance of a time-dependent wavelength, implying in partic-
ular the possibility of a smooth transition from trigonometric to hyperbolic functions withλ

becoming imaginary on passing through zero (a scenario we shall need to make use of later).
While the reduction (39) contains five degrees of freedom, substitution in (1) leads (some-

what remarkably) to three constraints only, namely

dλ

dt
= −λB,

dC

dt
= −ελ2C + 3BC + λAD, (40)

dD

dt
= −ελ2D + 3BD − λAC.

From (3) we have

dB

dt
= B2+ λ2(C2+D2)+ p, (41)

which givesp(t) in terms of the other unknowns. It follows from (40) that

d

dt

(
λ3(C2+D2)1/2

) = −ελ5(C2+D2)1/2, (42)
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a combination which will prove important in what follows. Because the system (40) represents
only three constraints, we are able to impose two boundary conditions, the appropriate choice
at this stage (for reasons indicated below) being the ‘inviscid’ conditions

F (−1, t) = 0, F (1, t) = 1, (43)

giving

A = 1
2 −D cosλ, B = 1

2 − C sinλ, (44)

and hence

dλ

dt
= −λ

(
1
2 − C sinλ

)
,

dC

dt
= −ελ2C + 3

(
1
2 − C sinλ

)
C + λ

(
1
2 −D cosλ

)
D, (45)

dD

dt
= −ελ2D + 3

(
1
2 − C sinλ

)
D − λ

(
1
2 −D cosλ

)
C.

We shall discuss the solution to (45) subject to (for reasons which will again become clearer
later)

at t = 0 λ = π, C = CI (ε), D = −1
2, (46)

whereCI(ε) → +∞ as ε → 0 in a manner which will be determined in Section 7. A
numerical solution to (45–46), together with a corresponding numerical simulation of (1–2),
is given in Figure 11. We now describe the limiting behaviour of (45–46) asε→ 0.

5.1.2. Slowest phases
The results for the first (large-amplitude) phase, corresponding to solutions roughly between
points 6 and 2 in Figure 7, are implicit in [15]. The appropriate scalings are (from (45))

t = ε−1T̂ , C = CI (ε)Ĉ, λ ∼ π, D ∼ −1
2, (47)

it then following immediately from (42) that the leading order solution is simply

Ĉ0(T̂ ) = e−π2T̂ , (48)

with

λ(T̂ ) ∼ π− 1

2CI (ε)Ĉ0

asε→ 0. (49)

The other phase of slowest evolution corresponds toT = O(1), where

T̂ = 1

π2
log(CI (ε))+ T (50)

with

λ ∼ λ0(T ), C ∼ C0(T ), D ∼ D0(T ) asε→ 0,

so that (from (42) and (45))

C0 sinλ0 = 1
2, D0 cosλ0 = 1

2, (51)
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and

d

dT

(
λ3

0

sin 2λ0

)
= − λ5

0

sin 2λ0
, (52)

asT →−∞ λ0 ∼ π− 1
2eπ2T ,

where we have matched with (49); we note that sin 2λ0 < 0. We have

p ∼ −
(

4λ0

sin 2λ0

)2

.

It follows from (52) thatλ0 decreases monotonically until it reachesλ0 = λc, where

3 tan 2λc = 2λc, λc ≈ 2·039, (53)

at which point the solution suffers finite-time breakdown, with

λ ∼ λc + λ2
c

(2λ2
c + 3)1/2

(Tc0− T )1/2 asT → T −c0 (54)

for someTc0. This breakdown of the solution to (52) leads on to a sequence of increasingly
shorter timescales and we now describe the first of these.

5.1.3. Intermediate phase
The appropriate scalings here are

T = Tc(ε)+ ε2/3τ, λ = λc + ε1/33, (55)

whereTc(0) = Tc0, and

C = 1

2 sinλ
+ ε2/3c, D = 1

2 cosλ
+ ε2/3d. (56)

The prediction of much faster evolution whenλ reaches the particular valueλc is noteworthy.
To leading order, (45) yields only two independent constraints, but a third is provided at once
by (42) (which thus acts as a solvability condition), giving the system

d30

dτ
= λc sinλc c0,

d30

dτ
= λc cosλc d0,

(57)
2(2λ2

c + 3)

sin 2λc
30

d30

dτ
+ λ2

c

(
cosλc

dc0

dτ
+ sinλc

dd0

dτ

)
= − λ4

c

sin 2λc
.

Matching back asτ→−∞ we have, by suitable choice of the origin ofτ in (55),

sinλc c0 = cosλc d0,
2λ2

c + 3

2 sinλc
32

0 + λ2
cc0 = λ4

c

2 sinλc
(−τ) (58)

and

d30

dτ
= 1

2λc

(
λ4
c(−τ)− (2λ2

c + 3)32
0

)
, (59)
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so that

30 = 2λc

(2λ2
c + 3)

d

dτ

(
log

(
Ai

((
λ2
c(2λ2

c + 3)

4

)1/3

(−τ)

)))
. (60)

It follows from (59) that

30 ∼ − 2λc

(2λ2
c + 3)

1

(τc0− τ)
asτ→ τ−c0 (61)

for someτc0 which can be expressed using (60) in terms of the first zero of the Airy function.
This blow-up in the current formulation requires consideration of the next (and final) phase of
this section, during which viscous effects play no role at leading order.

5.1.4. Inviscid phase
We write

τ = τc(ε)+ ε1/3t̂ , (62)

whereτc(0) = τc0, and let

λ ∼ λ0(t̂), C ∼ C0(t̂), D ∼ D0(t̂) asε→ 0,

these functions being distinct from those which appeared in Section 5.1.2. In (45) it is then
only the viscous terms that are negligible, so that

dλ0

dt̂
= −λ0

(
1
2 − C0 sinλ0

)
,

dC0

dt̂
= 3

(
1
2 − C0 sinλ0

)
C0+ λ0

(
1
2 −D0 cosλ0

)
D0, (63)

dD0

dt̂
= 3

(
1
2 − C0 sinλ0

)
D0− λ0

(
1
2 −D0 cosλ0

)
C0,

subject toλ0→ λc, C0→ 1
2 sinλc,D0→ 1

2 cosλc ast̂ →−∞, implying that

λ3
0(C

2
0 +D2

0)
1/2 = λ3

c/(− sin 2λc), (64)

a constant (cf. (42)). The solution to (63) also suffers finite-time blow-up att̂ = t̂c0, say, with

C0 ∼ λ3
c

λ3
0 sin 2λc

, D ∼ Dc

λ2
0

, (65)

for some constantDc, and

λ0 ∼
(

2λ3
c

− sin 2λc

)1/2 (
t̂c0− t̂

)1/2
ast̂ → t̂−c0. (66)

It follows from (39), (44) that at̂t = t̂c
F ∼ 1

2(1+ y)+ 1
2Dc(1− y2)− 1

6Ccy(1− y2), (67)

whereCc = λ3
c/(− sin 2λc). In terms of the solution to the inviscid RPJ equation, the apparent

singularity in (65–66) is thus illusory; in other words, there is no breakdown in the partial
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differential equation itself but only in theansatzneeded to describe its solution, which ceases
to be of the form (39) and becomes

F = A(t)+ B(t)y − 0(t) sinh(µ(t)y) +D(t) cosh(µ(t)y), (68)

which corresponds to settingλ = iµ, C = i0 in (39), the asymptotic solution shown in
Figure 11 having been constructed by solving (45) numerically fort < tc and the analogous
system for (68–69) fort > tc, proceeding throught = tc via (67); blow-up behaviour of the
form (65–66) applies to the full system (45) as well as to theε→ 0 limit. We now have

A = 1
2 −D coshµ, B = 1

2 + 0 sinhµ (69)

and, instead of (63),

dµ0

dt̂
= −µ0

(
1
2 + 00 sinhµ0

)
,

d00

dt̂
= 3

(
1
2 + 00 sinhµ0

)
00+ µ0

(
1
2 −D0 coshµ0

)
D0, (70)

dD0

dt̂
= 3

(
1
2 + 00 sinhµ0

)
D0+ µ0

(
1
2 −D0 coshµ0

)
00,

with, in place of (64),

µ3
0

(
02

0 −D2
0

)1/2 = λ3
c/(− sin 2λc). (71)

Initial conditions on (70) are

µ0 ∼
(

2λ3
c

− sin 2λc

) (
t̂ − t̂c0

)1/2
ast̂ → t̂+c0

with

00 ∼ λ3
c

µ3
0 sin 2λc

, D ∼ −Dc

µ2
0

.

The solution to (70) blows up in finite time, att̂ = t̂b0 say, and we need to describe this
blow-up behaviour in some detail. Ast̂ → t̂−b0, we haveµ0→+∞ with 00 ∼ −D0 so that

dµ0

dt̂
∼ 1

2µ0D0e
µ0,

dD0

dt̂
∼ 1

2µ0D
2
0eµ0 − 3

2D
2
0eµ0, (72)

from which it follows that

D0 ∼ Dbµ
−3
0 eµ0

for some constantDb and hence that aŝt → t̂−b0,

µ0 ∼ −1
2 log(t̂b0− t̂ )+ log(− log(t̂b0− t̂ ))− 1

2 logDb − log 2,

(73)

D0 ∼ 4D1/2
b

(t̂b0− t̂ )1/2(− log(t̂b0− t̂ ))2 .
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The asymptotic behaviour of

F0 =
(

1
2 −D0 coshµ0

)+ (1
2 + 00 sinhµ0

)
y − 00 sinh(µ0y)+D0 cosh(µ0y) (74)

therefore subdivides into three regions ast̂ → t̂−b0, as follows.
(I) y = O(1) with y < 1.

F0 ∼ − 1

(t̂b0− t̂ )(− log(t̂b0− t̂ ))(1+ y). (75)

(II) 1 − y = O(1/(− log(t̂b0− t̂ ))).

F0 ∼ − 2

(t̂b0− t̂ )(− log(t̂b0− t̂ ))
(
1− exp(log(t̂b0− t̂ )(1− y)/2)

)
. (76)

(III) 1 − y = O(t̂b0− t̂ ).

F0 ∼ 1− 1− y
t̂b0− t̂ , (77)

so that the interior zero ofF satisfies

yz ∼ 1− (t̂b0− t̂ ) ast̂ → t̂−b0. (78)

It is noteworthy that none of these leading-order expressions depends onDb.
Unlike (65–66), this form of singularity in the solution is genuine, rather than simply

reflecting a straightforward change in the appropriate representation of the solution. In other
words, when̂t becomes sufficiently close tôtb0, theansatz(68) ceases to apply and a quite
different approach is needed. We discuss the behaviour of this next phase in Section 6. Having
been ofO(1) for t̂ = O(1) (during which it reaches its minimum value),−p blows up aŝtb0
is approached (cf.Figure 11) according to

p ∼ − 1

(t̂b0− t̂ )2(− log(t̂b0− t̂ ))2 ast̂ → t̂−b0. (79)

5.2. OTHER REGIONS

5.2.1. Preliminaries
The solution (39), (68), subject to (43), provides an asymptotic description of the behaviour
away from the boundary layers aty = ±1. The purpose of the current subsection is to describe
these boundary layers and to indicate why the interior layer located about the zero ofF (which
played such a crucial role in Section 3.4) does not need separate treatment here. The other
issue which needs to be resolved in order to demonstrate the applicability of (39) concerns the
initial data; it is necessary for the above reduction to be valid that (39), (44) (together with
(46)) apply to leading order att = 0. Since we are seeking solutions which are periodic in
time, this is a point to which we shall have to return at the end of the analysis.

It is instructive to note next the balances in (1) which correspond to the various timescales
in Section 5.1. On the slow timescales of Section 5.1.2, the dominant balance is inviscid and
quasi-steady; from

εFyyT = εFyyyy + FyFyy − F Fyyy (80)
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we have at leading order

F0yF0yy − F0F0yyy = 0, (81)

so, imposing (43), we find

F0 = sinλ0(T )(y + 1)

sin 2λ0(T )
; (82)

the quantityλ0(T ) is not determined by the inviscid balance (81) but requires consideration of
the interior layer (as outlined below); its calculation is automatically included in the analysis
of (39) because theansatzencompasses both the outer regionsy = O(1), −1 < y < yz and
yz < y < 1, and the viscous interior layer abouty = yz.

The timescale of Section 5.1.3 is the one for which the use of theansatz(39) leads to the
greatest gain in brevity; basing the discussion on (1) instead would require the consideration
of the first two correction terms to the leading-order outer solution

F0 = sinλc(y + 1)

sin 2λc
,

which is independent ofτ, together with their matching into the interior layer. Corresponding
to Section 5.1.4, we have the inviscid leading-order balance

F0yyt̂ = F0yF0yy − F0F0yyy, (83)

F0(−1, t̂ ) = 0, F0(1, t̂ ) = 1. (84)

Two boundary conditions are sufficient here, despite (83) being third order iny; as explained
in [15] (see also Appendix A.1), (83) has partly hyperbolic nature, with characteristic projec-
tions given by

dy

dt̂
= F0

and, because of (84), these carry information out of the fluid domain (in other words, the
conditions (84) and the initial data are sufficient to determineF0, no new characteristics being
generated at the boundaries). A crucial (and rather delicate) issue later will be to find balances
whereby information is propagated back into the fluid from a viscous boundary layer (were
this not possible the blow-up in (75–77) could not be obviated, because viscous effects could
not influence (83), the solution to which suffers blow-up att̂ = t̂b0).

We are now in a position to discuss the two boundary layers and the interior layer.

5.2.2. Boundary layer aty = −1
If we write F = ε1/2Ḡ, y = −1+ ε1/2Ȳ , Equation (80) yields forT = O(1)

Ḡ0Ȳ Ȳ Ȳ Ȳ + Ḡ0Ȳ Ḡ0Ȳ Ȳ − Ḡ0Ḡ0Ȳ Ȳ Ȳ = 0,

at Ȳ = 0 Ḡ0 = Ḡ0Ȳ = 0,

asȲ →+∞ Ḡ0 ∼ F0y(−1, T )Ȳ ,

whereF0 is given by (82). The scalings

Ḡ0 =
(−F0y(−1, T )

)1/2
q̄(ξ̄), Ȳ = (−F0y(−1, T )

)−1/2
ξ̄
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reduce this to a standard Falkner–Skan problem (cf. Section 3.3 above and Section 3 of [7]).
For t̂ = O(1) we obtain the full balance in (1), with

Ḡ0Ȳ Ȳ t̂ = Ḡ0Ȳ Ȳ Ȳ Ȳ + Ḡ0Ȳ Ḡ0Ȳ Ȳ − Ḡ0Ḡ0Ȳ Ȳ Ȳ ,

at Ȳ = 0 Ḡ0 = Ḡ0Ȳ = 0, (85)

asȲ →+∞ Ḡ0 ∼ F0y(−1, t̂ )Ȳ ,

whereF0 is the solution to (83–84). Little more can usefully be said about (85); its solution
does not in any case influence the behaviour elsewhere. The other timescales of Section 5.1
do not warrant separate discussion.

5.2.3. Boundary layer aty = 1
From

F = 1+ εG, y = 1+ εY (86)

we find, on any of the timescales of Section 5.2,

G0YYYY − G0YYY = 0,

atY = 0 G0 = G0Y = 0,

asY →−∞ G0 ∼ F0y

∣∣
y=1Y,

so that

G0 = F0y

∣∣
y=1

(
Y + 1− eY

)
. (87)

5.2.4. Interior layer aty = yz
With the interior zero ofF aty = yz(t; ε), for T = O(1) the inner scalings are

y = yz(T ; ε)+ ε1/2z, F = ε1/2g, (88)

giving a balance in which the viscous term appears at leading order, namely

εgzzT − ε1/2dyz
dT
gzzz = gzzzz + gzgzz − ggzzz. (89)

From (82) we have

yz(T ;0) = π

λ0
− 1≡ yz0

and

F0 = F0yy = F0yyyy = 0 aty = yz0(T ),
so if in (89) we write

g ∼ g0+ ε1/2g1+ εg2+ ε3/2g3+ ε2g4

we obtain

g0 = F0y(yz0, T )z, g1 = α1(T )z, g2 = α2(T )z+ 1
6F0yyy(yz0, T )z

3,

g3 = α3(T )z− 1
2

dyz0
dT

F0yyy(yz0, T )

F0y(yz0, T )
z2+ β3(T )z

3, (90)
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where the calculation ofα1, α2, α3 andβ3 would require the construction of correction terms
to the outer solution; they need not concern us here. The crucial equation arises from the
z derivative of (89) atO(ε2), giving

G4z − F0y(yz0, T )zG4 = g2zzzT − g2
2zz =

d

dT

(
F0yyy(yz0, T )

)− F 2
0yyy(yz0, T )z

2, (91)

whereG4 = g4zzzz. SinceG4 is required not to grow exponentially as|z| → ∞, we obtain
from (91) that

G4 =
F 2

0yyy(yz0, T )

F0y(yz0, T )
z

together with the solvability condition

d

dT

(
F0yyy(yz0, T )

) = F 2
0yyy(yz0, T )

F0y(yz0, T )
; (92)

since

F0y(yz0, T ) = − λ0

sin 2λ0
, F0yyy(yz0, T ) = λ3

0

sin 2λ0

we thus recover (52), thereby completely specifying the outer solution (82).
There are two important points to make about the above. The first is that at each order

the inner solution is simply a polynomial inz, so the upshot of the inner analysis (i.e. of
the effects of viscosity) is that the outer solution is required at each order to be analytic at
y = yz0; given this constraint, (92) can instead be derived solely by consideration of the outer
expansion. Secondly, the time derivative in (91) is crucial in suppressing exponential growth
via the solvability condition (92). As is implicit in Section 3.4, in the steady-state problem
exponential growth cannot in general be eliminated in an interior layer about a zero off

at whichfy > 0 and this feature is crucial in showing that the interior layer described in
Section 3.4.2 must lie close toy = 1. By contrast, in the time-dependent problemyz can
be placed anywhere, but must evolve in a way which suppresses the exponential growth that
would otherwise be present (namely, according to (92)).

The above solvability condition can be viewed as arising from the viscous effects in the
interior layer. The situation for̂t = O(1) is rather different, the interior layer being passive as
far as the matching is concerned, viscous effects playing no role in the solution to (83–84). In
this case the inner scalings are

y = yz(t̂; ε)+ εẑ, F = εĝ

with

εĝẑẑt̂ − dyz
dt̂
ĝẑẑẑ = ĝẑẑẑẑ + ε(ĝẑĝẑẑ − ĝĝẑẑẑ). (93)

Hence at each order one has

ĝnẑẑẑẑ + dyz0
dt̂
ĝnẑẑẑ = polynomial inẑ,
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which itself has a polynomial solution and does not lead to a solvability condition. The
corresponding equation for (89) reads

gnzzzz + F0y(yz0, T )gnzz − F0(yz0, T )zgnzzz = polynomial inz,

a solvability condition on the right-hand side arising at each order on requiring thatgn be a
polynomial (or, equivalently, that exponential growth be absent) because the left-hand side
vanishes forgn = z3.

This completes our description of the slower phases of evolution, which can be described
most concisely via (39) and (68). We shall shortly see that a similar expression (see (154))
plays an important role during one of the faster phases, though the first (and most important)
of these, discussed next, requires a quite different approach.

6. Time-dependent flows: the phases of closest approach

6.1. FORMULATION

The results (77–78) and (86–87) each indicate that the preceding analysis breaks down on the
timescaleT̂ = O(1), where

t̂ = t̂b(ε)+ εT̂ , (94)

with t̂b(0) = t̂b0. On this timescale we have at leading order

F0Y T̂ = F0YYY + F 2
0Y − F0F0YY ,

atY = 0 F0 = 1, F0Y = 0, (95)

asY →−∞ F0 ∼ Y/(−T̂ ),
asT̂ →−∞

{
F0 ∼ 1+ (Y + 1− eY )/(−T̂ ) for Y = O(1),
F0 ∼ 1+ Y/(−T̂ ) for Y = O(−T̂ ),

where we have matched with (77) and (87). The initial–boundary-value problem (95) is a
crucial one, describing the manner in which viscous effects serve to reduce the rate at which
the interior zero approaches the right-hand boundary,yz achieving its closest approach to
y = 1 (whereby 1− yz = O(ε)) on this timescale.

The formulation (95) is the one of most significance forT̂ = O(1) and is discussed is
Sections 6.2–6.4 below; the scalings which apply on this timescale in the other regions are as
follows.
(A) Y = Ŷ /ε log(1/ε), F = F̂ /ε log(1/ε),
giving

F̂0Ŷ T̂ = F̂ 2
0Ŷ
− F̂0F̂0Ŷ Ŷ ,

at Ŷ = 0 F̂0 = 0, (96)

asŶ →−∞ F̂0Ŷ → 0,

asT̂ →−∞ F̂0 ∼ −2(1− eŶ /2)/(−T̂ ),
where we have matched with (76); the solution to (96) is separable, giving

F̂0 = −2(1− eŶ /2)/(−T̂ ). (97)
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(B) y = O(1), F̂ ∼ F̃0(y, T̂ ),
implying

F̃0yyT̂ = 0, (98)

so imposingF̃0 = 0 ony = −1 and matching with (75) and (97), we find

F̃0 = −(1+ y)/(−T̂ ). (99)

The pressure coefficient is determined by this region, giving

p ∼ − 1

ε2 log2(1/ε)(−T̂ )2 .

(C) y = −1+ εȳ, F = Ĝ/ log(1/ε),
where, at leading order,

Ĝ0ȳȳT̂ = Ĝ0ȳȳȳȳ

at ȳ = 0 Ĝ0 = Ĝ0ȳ = 0, (100)

asȳ →+∞ Ĝ0 ∼ −ȳ/(−T̂ );
initial conditions on (100) aŝT → −∞ must be deduced from the behaviour of (85) as
t̂ → t̂−b0, namely

Ḡ0 ∼ 1(
t̂b0− t̂

)1/2 (− log
(
t̂b0− t̂

))8
(

Ȳ(
t̂b0− t̂

)1/2
)

(101)

with

8(η) = −η+√π
(
1− eη2/4erfc(η/2)

)
, (102)

the nonlinear terms in (85) being negligible. From this it follows that the required solution to
(100) is

Ĝ0 = 1

(−T̂ )1/28
(

ȳ

(−T̂ )1/2
)
, (103)

with 8(η) again given by (102).
We now return to (95), the most important feature of which is its behaviour in the limit

T̂ → 0−; however, to obtain a sufficiently complete description of this we must first analyse
the limits T̂ →−∞ andY →−∞, considering an exponentially small correction term to

F0 ∼ Y/(−T̂ )+ Y∞(T̂ ) asY →−∞ (104)

whereY∞ is determined as part of the solution to (95).

6.2. THE LIMIT T̂ →−∞
In (104), it follows from (95) that

Y∞(T̂ ) ∼ 1+ 1/(−T̂ ) asT̂ →−∞. (105)
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The formulation (95) already contains the behaviour asT̂ → −∞ with Y = O(1); since we
shall also require an exponentially small correction term forY = O(−T̂ ), we write

F0 ∼ Y/(−T̂ )+ Y∞(T̂ )+ E
and linearise inE to give

ET̂ = EYY +
3

(−T̂ )E −
(

Y

(−T̂ ) + Y∞
)
EY . (106)

Introducingζ = Y/(−T̂ ) and using (105), we have

ET̂ +
1

(−T̂ ) (2ζ+ 1)Eζ ∼ 1

(−T̂ )2Eζζ − 1

(−T̂ )2Eζ + 3

(−T̂ )E asT̂ →−∞. (107)

In view of the need to match asζ → 0− into the term−eY /(−T̂ ) in (95), the required
expansion for (107) in the limit̂T →−∞ takes the WKBJ form

E ∼ 1

(−T̂ )a0(ζ)e
−(−T̂ )φ(ζ), (108)

implying

φ− (2ζ+ 1)φζ = φ2
ζ , (109)

in which the right-hand side represents the contribution of viscosity, and

a0+ (2ζ+ 1)a0ζ = −2φζa0ζ − φζζa0+ φζa0 + 3a0, (110)

subject to

φ ∼ −ζ, a0→ −1 asζ→ 0−.

Equation (109) can be reduced to autonomous form by writingφ = (ζ+ 1
2)

2ψ(log |ζ+ 1
2|),

yielding(√
φ+ (ζ+ 1/2)2+ (ζ+ 1/2)

)2 (
2
√

φ+ (ζ+ 1/2)2 − (ζ+ 1/2)
)
= 1/2, (111)

from which it follows that

φ ∼
√

2
3(−ζ)1/2− 1

4

√
2
3(−ζ)−1/2+O(1/(−ζ)) asζ→−∞. (112)

Using (109), we obtain the required solution to (110) as

a0 = − e−φζ − 1

(−φζ)3(−(2ζ+ 1+ 2φζ))1/2
, (113)

so that

a0 ∼ −e−163/2

21/2
(−ζ) asζ→ −∞. (114)
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6.3. THE LIMIT Y →−∞
The way in which the blow-up behaviour of (95) in the limitT̂ → 0− is selected is some-
what similar to that in which the minimum-speed travelling wave is selected by appropriate
initial-value problems for Fisher’s equation (an analogy we expand upon in Appendix A.2 by
discussing possible similarity solutions to the inviscid RPJ equation). In particular, a crucial
step involves determining an exponentially small term in the far-field behaviour of (95).

The relevant balance is again given by (106), but the viscous term is negligible in the limit
Y →−∞ (as is the case in the terms given in (112)), so that

E ∼ 1

(−T̂ )3 Ê
(
(−T̂ )Y −

∫ T̂

(−T ′)Y∞(T ′)dT ′
)

(115)

for some functionÊ(ω̂) which cannot be determined forω̂ = O(1) without solving the full
problem but which, by use of (112–114), satisfies

Ê(ω̂) ∼ −e−163/2

21/2
(−ω̂)e−

√
2/3(−ω̂)1/2 asω̂→−∞. (116)

6.4. THE LIMIT T̂ → 0−

We are now in a position to address the blow-up behaviour of (95). In the limitT̂ → 0− we
have

F0 ∼ Fc(Y ) for Y = O(1) (117)

with

Fc(0) = 1, FcY (0) = 0; (118)

Fc(Y ) for Y > 0 depends on the evolution over earlier times and cannot be determined without
solving the full problem.

For large−Y , specifically for−Y = O(− log(−T̂ )/(−T̂ )), the appropriate balance as
T̂ → 0− is of the form

F0 ∼ − log(−T̂ )
(−T̂ )2 �(ξ), ξ = Y (−T̂ )

− log(−T̂ ) (119)

(see Appendix A.2 for related considerations) with

�ξ − ξ�ξξ = �2
ξ −��ξξ, (120)

the viscous term being negligible, so that

�(ξ) = ξ+ ξ0 − ξ0eξ/ξ0 (121)

for some constantξ0. Matching with (116) asξ → −∞ (a procedure which involves the
matching of exponentially small terms) implies thatξ0 = 3 with

Y∞(T̂ ) ∼ 3(− log(−T̂ ))
(−T̂ )2 + 3 log(− log(−T̂ ))

(−T̂ )2 + 9 log 3

2(−T̂ )2 asT̂ → 0−, (122)
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indicating the time-dependence of the next two terms required in the expansion (119). It
follows from the behaviour of (121) asξ→ 0− that in (117) we have

Fc(Y ) ∼ −1
6Y

2/ log(−Y ) asY →−∞, (123)

so on this timescale the interior zero ofF tends to some fixed locationY = Yz(ε) = O(1),
whereFc(Yz0) = 0, this representing its closest approach to the right-hand boundaryy = 1.

6.5. TURN-AROUND TIME SCALE: T̂ = O(1/ log(1/ε))

We conclude this section by discussing an intermediate timescale on which (117) ceases to
apply (it does not in fact persist for very long) but (97), (99) and (119) remain applicable. On
the timescaleT ‡ = O(1), where

T̂ = T ‡/ log(1/ε), (124)

we have that the pressure coefficient

p ∼ − log(1/ε)

ε2(−T ‡)2
;

for Y = O(1) we thus have

F0YT ‡ = − 1

(−T ‡)2
, F0 = Fc(Y )− Y/(−T ‡) (125)

for T ‡ = O(1), showing how the interior zero ofF begins to move inwards (further away
fromy = 1) on this time scale. There is also a subsidiary boundary layer withY = O(1/ log1/2

(1/ε)), which is required to satisfy the conditionFy = 0 ony = 1.

7. Time-dependent flows: asymptotics of the fastest phases

7.1. T̂ = O(ε log2(1/ε))

7.1.1. Preamble
This is the timescale on which it follows from (119) that the boundary layer (95) merges with
the intermediate region described by (96–97). We write

T̂ = ε log2(1/ε)τ̂, F = H/ε2 log3(1/ε), (126)

so (119) implies the matching condition

H0 ∼ 1

(−τ̂)2
�(ξ), ξ = Ŷ (−τ̂) (127)

asτ̂→−∞ with Ŷ = O(1/(−τ̂)), where

�(ξ) = ξ+ 3− 3eξ/3. (128)

Away from y = 1, the analysis of Section 5.1.4 is still pertinent on earlier timescales, so (76)
implies the matching condition

H0 ∼ − 1

(−τ̂)

(
1− eŶ

)
(129)
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asτ̂→−∞ with Ŷ = O(1).
We have forŶ = O(1) the inviscid balance that

H0Ŷ τ̂ = H 2
0Ŷ
−H0H0Ŷ Ŷ . (130)

In view of (125) the boundary conditions on (130) are

asŶ → 0− H0 ∼ −1
6Ŷ

2,
asŶ →−∞ H0Ŷ → 0,

}
(131)

where we have matched asŶ → −∞. We now present the solution to (130) subject to (127),
(129) and (131).

7.1.2. Boundary layer solution
The approach outlined in Appendix A.1 can be used to derive the required solution. Omitting
the details of the derivation, we find the solution in terms of a parameterζi (which parametrises
the characteristics of (130)) in the form

Ŷ = −
∫ ∞

ζi

dζ

eζ/3− ζ− τ̂
, H0 = −

∫ ∞
ζi

dζ

(eζ/3− ζ− τ̂)2
. (132)

The crucial characteristics have

Ŷ (−τ̂) = −3 log(−τ̂)+O(1) asτ̂→−∞, (133)

and thus lie in the overlap regime between (127) and (129); (132) is thus best derived from a
composite (uniformly valid) representation such as

H0 ∼ 3

(−τ̂)2

(
1− e(−τ̂)Ŷ /3

)
− 1

(−τ̂)

(
1− eŶ

)
asτ̂→ −∞. (134)

In addition to (132), we have

H0Ŷ =
1

eζi /3− ζi − τ̂
, H0Ŷ Ŷ = −

1
3eζi /3− 1

eζi /3− ζi − τ̂
, (135)

so that

H0Ŷ Ŷ = 0 on the characteristicζi = 3 log 3. (136)

For matching purposes we need the following consequences of (132). Firstly,

H0 ∼ −
∫ ∞
−∞

dζ

(eζ/3− ζ− τ̂)2
asŶ → −∞. (137)

Secondly,H0 blows up aŝτ→ τ̂−c , where

τ̂c = −3(log 3− 1). (138)

It then follows, if we use (132) along the characteristics withζi = 3 log 3+ O((τ̂c − τ̂)1/2)

(cf. (136)), that

H0 ∼ Ŷ

2(τ̂c − τ̂)
− 31/2

23/2(τ̂c − τ̂)3/2
sin

(
21/2(τ̂c − τ̂)1/2Ŷ

31/2

)
, (139)
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for Ŷ = O((τ̂c − τ̂)−1/2) with −61/2π < Ŷ (τ̂c − τ̂)1/2 < 0, and

H0 ∼ − 31/2π

21/2(τ̂c − τ̂)3/2
(140)

for Ŷ = O((τ̂c − τ̂)−1/2) with Ŷ (τ̂c − τ̂)1/2 < −61/2π, consistent with (137). Appen-
dix A.2 clarifies why (139–140) is the self-similar form appropriate for describing the current
intermediate asymptotic behaviour.

As τ̂→ τ̂−c with Ŷ = O(1) we have that

H0 ∼ Hc(Ŷ ), (141)

whereHc is given by

Ŷ = −
∫ ∞

ζi

dζ

eζ/3− ζ+ 3(log 3− 1)
, Hc = −

∫ ∞
ζi

dζ

(eζ/3− ζ+ 3(log 3− 1))2
, (142)

so that

Hc ∼ −1
6Ŷ

2 asŶ → 0−, Hc ∼ 1
18Ŷ

3 asŶ → −∞, (143)

consistent with (131) and matching with (139). Finally, there is a similar region with

Ŷ = Ŷc(τ̂)+O(1), whereŶc ∼ −61/2π(τ̂c − τ̂)−1/2,

which provides a smooth transition between (139) and (140); we omit details, however.

7.1.3. Other regions
Fory = O(1) we have (cf. (98–99)), writingH ∼ Ĥ0(y, τ̂), that

Ĥ0yyτ̂ = 0

so that

Ĥ0 = −1

2

∫ ∞
−∞

dζ

(eζ/3− ζ− τ̂)2
(y + 1), (144)

where we have matched with (137). This implies that

Ĥ0 ∼ − 31/2π

23/2(τ̂c − τ̂)3/2
(y + 1) asτ̂→ τ̂−c . (145)

Lastly, the analogous region to that described by (100) has

y = −1+ ε3/2 log(1/ε)ỹ, F = H̃/ε1/2 log2(1/ε) (146)

with, by use of (101),

H̃0ỹỹτ̂ = H̃0ỹỹỹỹ ,

at ỹ = 0 H̃0 = H̃0ỹ = 0,

asỹ → +∞ H̃0 ∼ −1
2

∫ ∞
−∞

dζ

(eζ/3− ζ− τ̂)2
ỹ,

asτ̂→−∞ H̃0 ∼ 1

2(−τ̂)1/2
8
(
ỹ/(−τ̂)1/2

)
,


(147)
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where8(η) is given by (102) (we note that, as with (100), the nonlinear terms in (1) are of
relative sizeO(1/ log(1/ε)) here, so are only just negligible in (147)). In view of (145) we
have blow-up behaviour of the form

H̃0 ∼ 1

(τ̂c − τ̂)
9

(
ỹ

(τ̂c − τ̂)1/2

)
asτ̂→ τ̂−c , (148)

where

9(η) = −31/2π

23/2
η(1− eη2/4 erfc (1

2η)). (149)

7.2. τ̂ = τ̂c +O(1/ log2(1/ε))

We now discuss the final, and fastest, phase of evolution, in which the interior zero moves
rapidly from the neighbourhood ofy = 1 to that ofy = 0. We write

τ̂ = τ̂c + τ̄/ log2(1/ε), F = H/ε2, (150)

this being (in view of (139–140)) the timescale on which the boundary layer of Section 7.1.2
merges with the outer region. At leading order we have in the outer regiony = O(1) that

H0yyτ̄ = H0yH0yy −H0H0yyy, (151)

i.e. an inviscid balance but, in contrast to (130), one in which a non-zero pressure coefficient
P0(τ̄) is to be determined as part of the solution to (151), with

p ∼ P0(τ̄)/ε
4, H0yτ̄ = H2

0y −H0H0yy +P0(τ̄). (152)

From (145) we have

H0 ∼ − 31/2π

23/2(−τ̄)3/2
(y + 1) asτ̄→−∞ with y = O(1) (153)

and, sinceH0yy = 0 holds for all time along characteristics of (151) if it does so initially, we
are motivated to seek a solution of the form

H0 = −A(τ̄)(1− y)+B(τ̄) sin(λ̄(τ̄)(1− y)) y > S(τ̄),
H0 = −E(τ̄)(y + 1) y < S(τ̄),

}
(154)

for someS(τ̄) which is to be determined as part of the solution. The admissibility of such
a ‘two part’ solution stems from the hyperbolic character of (151) and from matching with
(139–140), which imply that

S(τ̄) ∼ 1− 61/2π/(−τ̄)1/2 asτ̄→−∞
H0 ∼ −(1− y)2(−τ̄)

+ 31/2

23/2(−τ̄)3/2
sin

(
21/2(−τ̄)1/2

31/2
(1− y)

)
asτ̄→−∞, y > S(τ̄);

(155)

in writing down (154) we have used the fact thatH0yy = 0 on y= 1 as well as iny < S(τ̄),
the characteristic projections of (151) satisfying

dy

dτ̄
= H0,
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so thaty = 1 is a characteristic, as isy = S(τ̄). The analyticity of the solution is maintained
via an interior layer aboutS(τ̄) (cf. the discussion of Appendix A.2). The continuity conditions
on (154) are

aty = S(τ̄) [H0]+− = [H0y]+− = [H0yy]+− = 0,

and from these and (151) it is straightforward to deduce that, up to translations inτ̄,

1
2λ̄

2+ πλ̄+ π2 log(λ̄− π) = 1
3(−τ̄),

S = 1− 2π

λ̄
, A = λ̄− π

3λ̄3
, B = 1

3λ̄3
, E = π

3λ̄3
.

 (156)

It follows that asτ̄→+∞
λ̄→ π+, S → (−1)+, (157)

at an exponentially fast rate, with

H0 ∼ 1

3π3
sin(πy) for y > S(τ̄), (158)

which brings us full circle back to (46), confirming that theansatz(39) is appropriate and
identifying the final unknown as

CI (ε) ∼ 1

3π3ε2
, (159)

and completing the analysis of the limit cycle behaviour. BothF and−p attain their maxi-
mum values as̄τ→ +∞ (cf. Figure 10), with

p ∼ − 1

9π4ε2
.

Viscous effects now come back into play, with the solution decaying slowly due to viscous
dissipation, as described by (47–48).

The final loose ends concern the behaviour in the boundary layers on this timescale; the
relevant scalings arey = ±1+ O(ε3/2) andF = O(ε−1/2), and the full balance occurs at
leading order in both the boundary layers (in view of (157), the rangey < S(τ̄) merges into
the left-hand boundary layer for sufficiently largeτ̄). In the right-hand boundary layer, there
is again an intermediate timescale, analogous to that discussed in Section 6.5, on which (141)
ceases to hold. Since

P0 = − π

3λ̄5
+ 2π2

9λ̄6
, (160)

we have

P0 ∼ 33/2π

25/2(−τ̄)5/2
asτ̄→ −∞

and the relevant timescale is

τ̄ = log4/3(1/ε)τ‡
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with

H0Ŷτ‡ = − 33/2π

25/2(−τ‡)5/2
, H0 = Hc(Ŷ )− 31/2πŶ

23/2(−τ‡)3/2
. (161)

A noteworthy reinterpretation of (154) involves consideration of the quantity

5(y, t) = F 2
yyy − FyyFyyyy.

For ε = 0 it follows from (1) that

5t = −F5y (162)

so that5 is constant along characteristics; moreover, for anyε, for which

5t + F5y = ε

(
2

Fyy

(
Fyyyy5− Fyyy5y

)
+5yy

)
, (163)

theansatz(39) corresponds exactly to5 (= λ6(C2 +D2)) being independent ofy, whereby
Fyyyy = −λ2Fyy and (163) reduces to (42). The solution (154) has5 piecewise constant (a
feature first established by the intermediate asymptotic similarity solution (139–140)), with
its value iny < S(τ̄) (zero for the leading-order solutionH0) being the remnant after viscous
dissipation (cf. (42)) of the previous oscillation. This ‘old’ value is swept out by a ‘new’ one
(the one which holds iny > S(τ̄)) whose value is that required to obtain periodic behaviour
by decaying to the ‘old’ value in the course of the oscillation. With this interpretation, the
leading-order value of5 (∼ 1/9ε4) can be deduced (given (162)) from the second of (143),
without any need to solve (151). Indeed, the details of the analysis of Section 7.1 can also be
circumvented – the solutions (127) and (129) each correspond to5 = 0, so the characteristics
on which5 is non-zero emanate from the overlap region (133); the blow-up behaviour is
dominated by the characteristic on whichH0Ŷ Ŷ = 0, so thatH0Ŷ is maximal, and this satisfies

Ŷ ∼ 3

(−τ̂)
log(3(−τ̂)) asτ̂→−∞

and has, by use of (134),5 ∼ 1/9ε4. Since the blow-up behaviour (139–140) dictates the
subsequent evolution, this determines the ‘new’ value of5; the calculation just given empha-
sises the importance of the composite expression of (134) in describing the overlap between
the ranges of validity of (127) and (129), as well as the crucial role played by the timescale
of Section 6, since this can be viewed as being responsible for the ‘new’ value. Plotting5

from the numerical solutions of Section 4 provides (given the relatively large values ofε in
the simulations) strong support for the scenario described above.

8. Discussion

The asymptotic analysis of the time-dependent problem outlined above leads to a remarkable
degree of analytical progress, involving a variety of nonlinear techniques. The key aspects
of the evolution are described by the low-dimensional reduction of Section 5 and by the
α = 1 and α= 1/2 similarity solutions of Appendix A.2 (which can be viewed as similarity
solutions of the second kind,cf. [27], albeit selected in a rather delicate way); in addition
the determination of the values of the constants in (121) and (139), corresponding toλ0 in
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each of (A12) and (A13), requires respectively the matching of exponentially small terms and
the solution of (130) by characteristic methods. Detailed comparison between numerical and
asymptotic results is not currently possible, largely because the numerical approach cannot be
applied withε small enough for a convincing comparison, particularly given the prevalence
of terms in log(1/ε) in many of the expansions; nevertheless, a comparison based on crude
extrapolation toε→ 0 of quantities obtained numerically for a variety ofε yields encouraging
results. Moreover, the asymptotic results successfully capture all the qualitative features of the
numerics (cf. Figure 5 in particular), as well as the orders of magnitude of the various quanti-
ties. Thus the asymptotic approach is currently the only way to construct the limit cycles for
very smallε and is very valuable in clarifying how the evolution proceeds and why numerical
approaches encounter difficulties whenε is small (in particular, the period of the oscillation
scales ast = O(log(1/ε)/ε) (see (50);(log(CI (ε))/π2 + Tc0)/ε provides an estimate of the
period), while on the fastest phase (see (150))t varies by anO(ε2) amount). While the analysis
is sufficiently complicated that the validity of all the algebraic details cannot of course be
guaranteed, the approach of Appendix A.2 provides independent verification of the key role
played by theα = 1 andα = 1/2 similarity solutions; the values ofλ0 in (A12) and (A13)
cannot be determined solely by such an approach, though, so these two constants are likely to
be the quantities most susceptible to error.

The inviscid version of the RPJ equation

F0yyt = F0yF0yy − F0F0yyy, F0yt = F 2
0y − F0F0yy + p0(t)

plays a central role in our analysis and has characteristic projections

dy

dt
= F0(y, t) (164)

on which

dF0y

dt
= F 2

0y + p0(t),
dF0yy

dt
= F0yF0yy (165)

(cf. Appendix A.1; the Lagrangian equation forx corresponding to (164) is

dx

dt
= −xF0y(y, t),

it being noteworthy that this furnishes the linearising transformation for the Riccati equation
given by the first of (165). Moreover, from (4) we have

dF0

dt
= −p̂y, d

dt
(xF0yy) = 0,

the second of which corresponds to vorticity conservation along characteristics). An issue
alluded to above concerns the fact that it follows from (164) that the characteristics neary = 1
leave the fluid domain (sinceF0(1, t) = 1), whereas information needs to be fed back into
the fluid for the solution to remain bounded and for the limit cycle to turn around. This is
accomplished in two ways. During the later stages of turn-around one hasF � 1 so that (as
in (131)) the leading-order inviscid problem sees zero normal velocity at the wall and there
is within the leading-order formulation (cf. (127), (129)) an infinite amount of time for the
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information to propagate in. More noteworthy, however, are the earlier stages of this process;
if we write

F ∼
N∑
n=0

µn(ε)Fn(y, t)+ ν0(ε)90(y, t)e
−8(y,t)/ε asε→ 0,

whereµ0(ε) = 1 and the summation gives the algebraic expansion forF , with N (ε) being
its optimal truncation point (such a procedure enables the exponentially small term to be
legitimately separated off in very general contexts,cf. [28]), then (away from Stokes lines, of
which we avoid discussion here) we have from (1) that

8t = −82
y − F08y. (166)

Equation (166) has characteristic projections

dy

dt
= F0(y, t) + 28y(y, t), (167)

the final term of which represents the effects of viscosity; since the constraints8(1, t) = 0,
8y(1, t) = −1 are required in order to match into the viscous boundary layer, (167) implies
that information does indeed propagate back into the fluid, a feature which underpins the
matching of exponentially small terms in Section 6.

The reduction (39), (68) is noteworthy for a number of reasons. Firstly, it provides a large
family of exact solutions to the incompressible Navier–Stokes equations, for which some
generalisations are available – for example, via solutions of the formψ = 9(y, t)−xF (y, t),
p = p̂(y, t)+ xP (t) + x2p(t)/2 satisfying (3), (4) and

9yt = ε9yyy +9yFy − F 9yy − P(t);
of course, in the Navier–Stokes (rather than RPJ) context there are important issues concerning
the stability or otherwise of the solutions we have described. Secondly, it plays a very valuable
(and concise) role in providing a uniformly valid description of the outer behaviour over each
of the timescales discussed in Section 5.1; we stress that this reduction is valid in the current
context only in the asymptotic limitε → 0, for which it provides an immense saving in
computational time. The concept of a uniformly valid expansion is very well-established (see,
for example, [29]), but such examples motivate us to comment on ‘uniformly valid equations’,
whereby the original formulation is replaced by a simpler one which has the same asymptotic
behaviour; the resulting simplified formulation may be very convenient for numerical (as well
as asymptotic) studies, particularly when the stiffness of the original problem can be removed
in this fashion. The concept can be illustrated by giving a reinterpretation of an example
discussed in Appendix 1 of [30], namely

ut =
(
(u+ ε)mux

)
x

(168)

with 0 < ε � 1,m > 0. Forε = 0, Equation (168) has compactly supported solutions and
an analysis of the limitε→ 0 clarifies how this property is lost for positiveε; a very concise
presentation of such a limit (which is guided by the asymptotics) introduces the quantity

v =
∫ u

0

(
(u′ + ε)m

u′
− εm

u′

)
du′ + εm logu, (169)
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giving the uniformly valid leading-order equation

v0t = mv0H(v0)v0xx + v2
0x, (170)

whereH is the Heaviside step function. Equation (170) encompasses each of the three regions
appearing in [30] in a single equation and makes explicit the hyperbolic character of the
low concentration tail. Moreover, the simplification to (170) permits a family of similarity
solutions, notably

v0 = t−m/(m+2)V (x/t1/(m+2)), (171)

not shared by the full equation (168); (171) provides a uniformly valid expression of the
asymptotic behaviour forδ-function initial data foru. It is worth noting that, because the
nonlinearity in (170) is not analytic inv0, care is needed when applying classical Lie group
techniques to identify such similarity reductions.

We conclude by drawing together the analyses of the steady-state and time-dependent
problems by outlining for smallε the role played in the transient problem by the unstable equi-
librium solution. It is noteworthy that the outer steady-state solution (29) is of the form (39),
but the relationship between the two problems is somewhat subtle, with no region completely
analogous to the interior layer of Section 3.4.2 featuring in the time-dependent analysis. When
the steady-state solution is perturbed, time-dependent effects make their first appearance in the
O(ν2) term of (23), thereby introducing a time derivative into (28); a number of timescales are
needed to describe this, each havingεt = O(logq(1/ε)) for someq. The conclusion regarding
the behaviour subsequent to these timescales is that if the steady state is (roughly speaking)
perturbed by moving the interior zero towardsy = 0, then the solution quickly locks onto
the (slow) viscous-dominated phase of evolution (51–52), the instability of the steady state
corresponding to the instability from above of the fixed pointλ0 = π/2 of (52), from which
λ0 then increases toλc (leading onto the faster phases). Conversely, if the interior zero is
perturbed towardsy = 1, the solution instead enters the (fast) inviscid phase, given by (63)
with the 1

2’s negligible becauseD0� 1. In view of (29), (31), the relevant scalings are

t̂ = ε log(1/ε)t‡, D0 = D‡
0/ε log(1/ε), C0 = C‡

0/ε log(1/ε),

with

D
‡
0→−

1

4π
, C

‡
0 → 0, λ0→ (π/2)− ast‡→ −∞,

from which it follows that

D
‡
0 = −

1

4π

(
π

2λ0

)3

sinλ0, C
‡
0 = −

1

4π

(
π

2λ0

)3

cosλ0,

and

dλ0

dt‡
= − 1

8π

(π

2

)3 sin 2λ0

λ2
0

, (172)

the instability of the steady state corresponding to (172) also having an unstable fixed point
at λ0 = π/2. The solution to (172) then drops to zero (cf. (66)), leading onto behaviour
comparable to that described above. The unstable steady state can thus be viewed as providing
a borderline between initial conditions which evolve onto the slow part of the limit cycle (with
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yz initially decreasing) and those which lead rapidly into the fast phases (withyz, already close
to y = 1 for the steady state, initially increasing).

Our ordinary differential equation results of Section 3 are of sufficient accuracy to provide
viable representations of the steady-state behaviour for largeR, while the partial differential
equation results of Sections 4–7 are of practical value in describing the evolution of the RPJ
equation in that no straightforward and suitable numerical approach is available for even quite
moderately largeR; the extent of analytical progress that is possible here makes the asymptotic
approach particularly worthwhile. Furthermore, as with many asymptotic studies, valuable
insight is provided into the dominant physical balances which occur.

9. Concluding remarks

We hope that the detailed analysis of (1) described above is of interest both from the point
of view of asymptotic methods and in view of its relevance as a paradigm problem for the
time-dependent Navier–Stokes equations. The variety of asymptotic approaches needed is
highlighted at the beginning of Section 8 and the analysis illustrates some of the complexities
which arise in studying the asymptotics of time-dependent, spatially heterogeneous solutions
to partial differential equations, specifically those exhibiting time dependence in the form of
relaxation oscillations.

In the symmetrical version of (1–2), with equal fluid suction velocities at each channel
wall, temporally chaotic solutions are found in numerical simulations at moderate Reynolds
number [9, 15]. These solutions are analogous to chaotic solutions to the Lorenz system of
three ordinary differential equations: the velocity profile may ‘flip’ about the centre-liney = 0
of the channel in an apparently random fashion, just as solutions to the Lorenz system flip
between the two wings of the Lorenz attractor. Whether the approaches outlined above would
prove equally efficacious in analysing such chaotic behaviour is an intriguing open question.
A less speculative extension of our analysis would be in describing the large-amplitude limit-
cycle solutions that we have also found in numerical simulations of the symmetrical problem
at large Reynolds number, which appear to have a structure close to that of the large-amplitude
limit-cycle solutions to the asymmetrical problem given above.

While the asymptotic methods we have used are for the most part well-established, novel
features of the current work include the manner in which some of them are applied and the use
in combination of such a range; we expect that a similar synthesis of different techniques will
prove valuable in many other evolutionary problems. With regard to our steady-state analysis,
we would highlight the key role of optimal truncation in making an expansion in inverse
powers of the logarithm of the small parameter sufficiently accurate to be useful in practice.

The RPJ equation can play an instructive role as an exact reduction of the Navier–Stokes
equations in, for example, studying blow-up phenomena and transitions to chaos. We accord-
ingly hope that some of the apparatus we have developed will also prove useful in the study
of the full Navier–Stokes equations or of other similarity reductions thereof. An example of
the latter is the flow between a porous rotating disk and an impermeable, fixed plane [31],
where a Hopf bifurcation is known to give rise to stable oscillatory solutions, although the
time-dependent flow at large Reynolds number remains to be investigated. The natural ex-
tension of the RPJ equation to fully three-dimensional flows is also known to exhibit chaotic
solutions [32]; these too may be amenable to our approach.
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We have given perhaps one of the most detailed asymptotic studies so far undertaken of
fully time-dependent nonlinear behaviour in a large Reynolds number flow problem of this
type and, as indicated above, we hope that the asymptotic analysis described will be of value
in the treatment of a range of related initial–boundary-value problems. Moreover, the current
analysis is more broadly of some interest from the point of view of nonlinear parabolic sys-
tems, it being rare for scalar parabolic equations to possess temporally periodicω-limit sets.
We hope that the approaches we have outlined will also prove effective in asymptotic studies
of a variety of other evolutionary problems arising in a range of contexts.
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Appendix A. The zero-pressure inviscid Riabouchinsky–Proudman–Johnson equation

A.1. GENERAL SOLUTION

This appendix is concerned with the partial differential equation

Fyt = F 2
y − F Fyy; (A1)

this is known to be integrable (cf. [15] and references therein) but it is useful in the current
context to outline a convenient means by which initial-value problems can be solved for
arbitrary initial data. We note that results equivalent to some of those below have also been
obtained (in a slightly different context) by Galaktionov and Vazquez [33]; a special case of
(39), namely

F = B(t)y + C(t) sinλ(t)y with p(t) = 0

can be used to exemplify the generic blow-up behaviour they describe. The analysis we give
fairly readily generalises to the equation

Fyt = F 2
y − F Fyy + p(t)

for prescribedp(t) (again see [15]), but in practice the pressure coefficient is typically un-
known and we shall not pursue the casep 6≡ 0.

From (A1) we have

Fyyt = FyFyy − F Fyyy, (A2)

and so (A1–A2) can be solved by characteristic methods by satisfying

dy

dt
= F , (A3)

dFy

dt
= F 2

y ,
dFyy

dt
= FyFyy (A4)

along the characteristics ((A3) shows that these represent particle paths); givenFy ≥ 0,
characteristics on whichFy does not blow up therefore haveFy ≡ 0. For the initial-value
problem

at t = 0 F = Fi(y),
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we impose on each characteristic that

at t = 0 y = yi, Fy = F ′i (yi), Fyy = F ′′i (yi),

usingyi to parametrise the initial data, and (A4) then gives

Fy = F ′i (yi)
1− tF ′i (yi)

, Fyy = F ′′i (yi)
1− tF ′i (yi)

; (A5)

moreover, if we writey = y(t; yi ), it follows from (A3) that along characteristics

d

dt

(
∂y

∂yi

)
= ∂y

∂yi
Fy

so that

∂y

∂yi
= 1

1− tF ′i (yi)
and hence

y =
∫ yi

0

1

1− tF ′i (ξ)
dξ+ ya(t), F =

∫ yi

0

F ′i (ξ)
(1− tF ′i (ξ))2

dξ+ ẏa(t), (A6)

whereya is arbitrary except thatya(0) = 0, ẏa(0) = −Fi(0). Expressions (A5) and (A6)
furnish the general solution to (A1) in terms of the parameteryi , as is readily confirmed by
direct substitution. Imposing the boundary data

y = 0 F = Fy = 0,

for example (this being relevant to the analysis of Section 7.1), withFi(0) = F ′i (0) = 0,
implies thatya(0) = 0. In that context, however, we have the difficulty of wishing to impose
initial data ast → −∞ rather than att = 0, with y → 0+ ast → −∞ on characteristics;
nevertheless, the initial–boundary-value problem in question can similarly be solved to give
(132).

A.2. SIMILARITY SOLUTIONS

Of particular interest in the preceding analysis are the scaling similarity solutions of (A1),
namely

F = (−t)−(α+1)�(η), η = y(−t)α; (A7)

these satisfy

�η − αη�ηη = �2
η −��ηη (A8)

so that we require�η = 0,�η = 1 or

�α
η(1−�η)

1−α = λ0(αη−�) (A9)

for some constant of integrationλ0. Writing � = αη − 8 in (A9) yields an autonomous
equation whose phase plane is readily analysed; moreover,∫ �η

0
P α−1(1− P)−α dP = λ0(η+ η0) (A10)
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for some constantη0. Imposing the conditions

atη = 0 � = �η = 0, (A11)

so thatη0 = 0, we have

� ∼ α

α+ 1
(λ0α)

1/αη(α+1)/α asη→ 0+,

and we thus needα > 0, λ0 > 0. For our purposes the cases

α = 1 � = − 1

λ0
+ η+ 1

λ0
e−λ0η, (A12)

α = 1

2
� = 1

2
η− 1

2λ0
sin(λ0η), (A13)

are those of most significance (for reasons which will subsequently become clear). We first
consider the condition

asη→+∞ �η→ 1, (A14)

relevant to Section 6.4. This constraint is automatically satisfied for (A9), (A12) whenα ≥ 1,
with

�η ∼ 1− (λ0(α− 1))1/αη−1/(α−1) asη→+∞ for α > 1;

the approach to (A14) is therefore most rapid for (A12) and it was shown in Section 6.4 how a
‘logarithmically perturbed’ version of theα = 1 similarity solution is selected by appropriate
matching of the exponentially decaying term (in a manner analogous to the way in which a
logarithmically perturbed form of the fastest-decaying travelling wave is selected by Fisher’s
equation; see [34], for example). Equation (A8) also possesses non-analytic solutions which
satisfy (A11) and (A14) when 0< α < 1; these satisfy (A9) forη < ηc, where�(ηc) = αηc,
�η(ηc) = 1, and� = αηc + η− ηc for η > ηc, with

� ∼ αηc + (η− ηc)+ 1− α

2− α
(λ0(1− α))1/(1−α)(ηc − η)(2−α)/(1−α) asη→ η−c . (A15)

However, for such a solution to be tenable in the current context, it must be realisable as the
δ→ 0+ limit of a solution to the viscous equation

Fyt = δFyyy + F 2
y − F Fyy, (A16)

with t → 0− (where we here useδ to denote the size of the (small) viscous term). Introducing

y = s(t) + δ1/2z, F = ṡ(t)+ δ1/2 z

(−t) + δ(2−α)/2(1−α)F (A17)

to describe the viscous interior layer, wheres(t) ∼ ηc(−t)−α, yields to leading order inδ that

F0zt = F0zzz + z

(−t)F0z − z

(−t)F0zz. (A18)

It is easily seen that the only solutions to (A18) of the form

F0 = (−t)q8(ζ), ζ = z/(−t)1/2 (A19)
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which do not blow up exponentially in at least one of the limitsζ→ ±∞ are polynomials of
the form

8(ζ) = kN
[N/2]∑
n=0

γnζ
N−2n, q = 3

2(N − 2), (A20)

whereN is a non-negative integer,kN is arbitrary,γ0 = 1 and the otherγn can be determined
from (A18). It is also readily confirmed that (A19–A20) provide the only relevant solutions
to (A18) in the limit t → 0−; since it is not possible to match any of these both with (A15)
asz → −∞ and with� = αηc + η − ηc asz → +∞, the caseα < 1 can thus be ruled
out, further clarifying the reasons why (A12) is the solution that arises when describing the
relevant intermediate asymptotic behaviour.

In Section 7.1 a condition corresponding to

asη→+∞ �→ �∞ (A21)

applies (in addition to (A11)), where the constant�∞ needs to be determined as part of the
solution. As already indicated, this condition cannot be satisfied forα ≥ 1 when (A11) holds;
for particularα < 1, however, we can construct a suitable solution in two parts, comprising
a solution to (A8) with�η 6≡ 0,1 for η < 2ηc, with �(2ηc) = 2αηc, �η(2ηc) = 0, and
� = 2αηc for η > 2ηc (the quantityηc is given by (A22) below, with�∞ = 2αηc). However,
before discussing the acceptability of such a non-analyticity atη = 2ηc, we need to consider
the behaviour close toη = ηc, since�η(ηc) = 1, implying that the analysis of (A18) described
above becomes relevant; using (A10) we have

λ0ηc =
∫ 1

0
P α−1(1− P)−α dP. (A22)

The inner solutions (A20) are now viable, requiring to match with (A15) asz→−∞ that

α = N − 2

N − 1
, kN = 1

N

(
λ0

N − 2

)−(N−2)

. (A23)

However, to continue the solution intoη > ηc it is necessary thatN be an odd integer; then
for ηc < η < 2ηc we can replaceλ0 in (A9) by−λ0 and take

�(η) = 2αηc −�(2ηc − η) (A24)

(such a change of signs in (A9) is already implicit in (A13)). We deduce, therefore, that a
similarity solution of the form (A7) satisfying (A10) and (A21) is realisable only whenα is
given by (A23), whereinN > 1 is an odd integer. Moreover, the preceding analysis of (A18)
indicates that the generic case isN = 3, α = 1

2, explaining its occurrence in the analysis of
Section 7.1. Forα = 1

2, we have from (A13) thatηc = π/λ0.
Finally, we need to explain the reasons for the acceptability of the non-analyticity in the

solution atη = 2ηc. (We note that more than one oscillation in, say, (A13) could in principle
occur before the solution switches to� = �∞, but the caseηc = π/λ0 is expected to be
generic, rather thanηc = Mπ/λ0 for some integerM > 1.) Asη→ 2η−c we have from (A9)
that

� ∼ 2αηc + α

α+ 1
(αλ0)

1/α(2ηc − η)(α+1)/α. (A25)
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The inner scalings for (A16) thus now read

y = s(t) + δ1/2z, F = ṡ(t)+ δ(α+1)/2αF (A26)

with, in this case,s(t) ∼ 2ηc(−t)−α, leading in place of (A18) to

F0zt = F0zzz, (A27)

from which it follows that

F0(z, t) ∼ 80(z) ast → 0−,

where viscous effects play no role and80(z) is arbitrary (being determined by the evolution
over earlier times) except that it satisfies

80 ∼ α

α+ 1
(αλ0)

1/α(−z)(α+1)/α asz→−∞,

80→ 0 asz→+∞.

Hence the interior layer (A26–A27) places no constraints on the value ofα, the only active role
played by viscous effects in the discussion of this appendix being confined to the interior layer
described by (A17–A18), which plays a crucial role in selecting the valueα = 1

2. Although
viscosity plays no explicit role in Section 7.1.2, the inner analysis aboutη = ηc described
above implies the requirement on the inviscid solution that it be analytic whereFy is maximal;
such a constraint is implicit in the derivation of (132). We note thatω = xFyy = 0 at both
η = ηc andη = 2ηc and, in view of (A4), both are therefore characteristics of (A1).

Appendix B. Symmetries of the viscous Riabouchinsky–Proudman–Johnson equation

This appendix is concerned with the symmetries of (1) and briefly indicates some of their
implications. This partial differential equation is invariant under translations of bothy andt ,

y∗ = y + y0, t∗ = t + t0, F ∗ = F , (B1)

and has a scaling invariant

y∗ = σy, t∗ = σ2t, F ∗ = F /σ (B2)

(with the inviscid caseε = 0 having another) which implies the existence of the similarity
reductions

F (y, t) = (±t)1/2�(η), η = y/(±t)1/2 (B3)

which fail, however, to feature in our asymptotic analysis (though only just – see (101)). More
interesting is the infinite-dimensional Galilean symmetry

y∗ = y − s(t), t∗ = t, F ∗(y∗, t∗) = F (y, t) − ṡ(t) (B4)

wheres(t) is arbitrary. This symmetry has an implicit role in the analysis of a number of the
interior layers appearing above and it implies the obvious result thatF = a(t)+b(t)y satisfies
(1) for anya(t) andb(t). Moreover, it leads, together with (B1), to the similarity reduction

F (y, t) = ṡ(t)+�(η), η = y − s(t), (B5)
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which has steady states and travelling waves as special cases (with the particular implication
that steady-state results carry over directly to the more general class of solutions (B5)), and,
together with (B2), to

F (y, t) = ṡ + (±t)1/2�(η), η = (y − s(t))/(±t)1/2. (B6)

Another noteworthy feature of (1) is its quadratically nonlinear form, which we have
already exploited to obtain low-dimensional reductions, giving solutions which cannot be
obtained by classical similarity methods. The relevant invariant subspaces are preserved under
(B1), (B2) and (B3), so (prior to the imposition of boundary conditions) the resulting ordinary
differential equations inherit each of these symmetries; it is worth noting that the invariant
subspaces include useful special cases of (68) of the form

F = a(t)+ b(t)y + c(t)e−λ(t)y, F = a(t)+ c(t)e−κy.
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